The critical issue on the development of X-ray and high-energy particle detection and imaging with superfast and high-spatial resolution is to achieve the structural scintillation detector arrays with superfast decay time. Combination of the excellent advantages of ZnO-based material, such as the sub-nanosecond decay time and high light yield, the corresponding fundamental researches on the design, fabrication and performance of novel ZnO:Ga high-energy X-ray scintillation screen with single crystal nanorod array structure are proposed firstly in order to satisfy the requements of the defence-related science and technology, high energy physics and nuclear physics. There research works will be favorable for laying a solid foundation for high-energy X-ray (>10 keV) detection and imaging with superfast and high-spatial resolution. Under the theoretical guidances of Monte Carlo simulation design of the nanrod arrays and the first-principles computation of the material microstructures, the method of the growth of nanorod scintillation arrays will be established, and the optimal processing conditions for the fabrication of the ZnO:Ga nanorod arrays with excellent scintillation performances will be obtained in this porject. The mechanism of the influences of the array structures and material microstructures on the energy transfer process and scintallation performances will be revealed by exploring the intrinsic relationship between the scintillation properties and these structures. The scintillation screen with large size, sub-nanosecond decay time and sub-micrometer spatial resolution will be developed through our efforts, so as to basically satisfy the requements of high-energy X-ray detection and imaging.
超快、高空间分辨率的高能X射线或粒子探测与成像的关键在于获得兼备超快衰减时间、结构化闪烁转换屏。紧扣国防科技、高能物理、核物理等领域的国家战略需求,结合ZnO基材料所具备的亚纳秒衰减时间、高光产额等突出优势,我们率先提出以ZnO:Ga单晶纳米棒阵列为对象,开展新型结构化高能X射线闪烁转换屏的设计、制备及性能等相关基础研究,为实现高能X射线(>10 keV)的超快、高空间分辨率探测与成像奠定基础。研究中,在纳米阵列结构的蒙特卡罗模拟设计与材料微结构的第一性原理计算等理论指导下,建立ZnO:Ga纳米棒闪烁阵列的生长方法,获得制备高闪烁性能ZnO:Ga阵列的优化条件。通过探索纳米棒阵列结构、材料微结构与闪烁性能之间的内在关系,揭示它们对能量传递过程和闪烁性能影响的作用机理,研制出能基本满足高能X射线探测与成像要求的大尺寸、亚纳秒衰减时间、亚微米空间分辨率闪烁转换屏。
基于本项目的研究目标,开展了新型结构化高能X射线闪烁转换屏的设计、制备及性能等研究。结合磁控溅射和水热反应法,通过制备工艺探索与闪烁性能优化,研制出满足高能X射线探测与成像要求的超快、高空间分辨ZnO基单晶纳米棒阵列闪烁转换屏,达到预期目标,很好地完成了本项目的研究任务。. 针对高能X射线(> 10keV),采用GEANT4蒙特卡洛模拟,并综合考虑样品制备工艺因素,设计出性能优异的ZnO单晶纳米棒阵列闪烁转换屏。半径500 nm、长10 µm的ZnO单晶纳米棒所组成的阵列的空间分辨率接近1 µm,为该转换屏的制备提供了指导。. 采用水热反应法,在磁控溅射制备的ZnO种子层上生长出垂直衬底、致密排列、20 μm厚的ZnO基(ZnO、ZnO:Ga和ZnO:In)单晶纳米棒阵列。获得了结合磁控溅射和水热发应法制备该阵列的优化工艺参数,这对于制备高空间分辨率ZnO基纳米棒阵列闪烁转换屏具有直接借鉴作用。. 通过ZnO基单晶纳米棒及其阵列闪烁转换屏闪烁发光性能的研究,认识了纳米棒缺陷的分布情况,为改善该闪烁转换屏的性能提供了线索。采用氢气退火处理,极大提高了转换屏的紫外超快闪烁发光性能,同时抑制了其缺陷可见光发射,并获得了相应优化工艺参数,为高性能ZnO基纳米棒阵列超快闪烁转换屏的制备奠定了基础。. 获得了适用于高能X射线探测与成像的超快、高空间分辨阵列闪烁转换屏,其性能指标达到:样品直径38 mm;阵列厚度18 μm(可用于能量大于10 keV的X射线);亚纳秒发光衰减时间;20 keV的X射线激发下,在上海光源X射线成像系统上的空间分辨率优于1.0 μm,大大超过目前国际上已报道的数据。. 总体来说,本项目的研究结果为高能X射线的超快、高空间分辨率探测与成像奠定了坚实的基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application
农超对接模式中利益分配问题研究
基于像素化结构的ZnO:Ga单晶纳米棒阵列 α粒子闪烁屏研究
纳米线阵列结构Lu2SiO5:Ce硬X射线闪烁转换屏研究
基于硅孔阵列高分辨率像素化CsI(Tl)闪烁转换屏的研究
集成片上闪烁层CMOS X射线阵列传感器研究