Bacterial-microalgae symbiotic system is not only a resource reclamation technology, but also an effective way to purify sewage. However, there are some technical bottlenecks in the process of application, such as the lower removal rate of the symbiotic system, the difficulties about development and selection of the carrier material in the immobilization process, etc. This program proposes that mycelial pellet can be used as biomass carrier material for microalgae. Then a symbiotic system can be established which makes mycelial pellet and microalgae coupled.Consequently the removal rate of the coupled symbiotic system should be improved, the reutilization income of residual sludge should be increased, the cost of the immobilization process should be reduced and the inhibition of physicochemical impurities in the energy recovery process should be abated. Based on the research objectives, we would firstly propose culture method of mycelial pellet-microalgae coupled system, establish the comprehensive evaluation methods of coupled system. The program studies the effect of operational conditions on the startup of bacterial-microalgae coupled system in photobioreactor, clarifies the relationship between environment and coupled system and the an optimized control strategy about system establishment is proposed based on the comprehensive analysis. Then, we would analyze synergistic effect and mechanism of coupled system for treating domestic sewage, explore the main formation mechanism of mycelial pellet-microalgae coupled system by the characterization of physicochemical and biological properties, internal structure and microbial community structure of coupled system. The results will be of great theoretical interest and has significant practicality to guide establishment of bacterial-microalgae coupled system and its running with high efficiency and stability.
菌藻共生技术处理污水既是资源化技术,也是净化污水的有效途径。但是目前工艺应用存在悬浮式菌藻共生系统处理效率较低,及固定化过程中载体材料开发与选用较为困难等技术瓶颈。本项目提出以菌丝球作为微藻的生物载体材料,建立菌藻耦合固定化系统,从而达到提高共生系统的处理效率、增强剩余污泥资源化收益、降低固定化成本和能源回收过程中物化杂质抑制影响等效果。基于此研究目标,项目提出菌藻耦合系统培养方法,建立其综合评价体系。在光生物反应器体系中,控制不同的运行条件进行菌丝球与微藻耦合系统启动研究,阐明环境与系统之间的相互关系,并以综合分析结论为依据,提出较为优化的系统建立控制策略。结合耦合系统的物理、化学和生物性质及结构表征,分析菌藻耦合系统协同效果及机理,探讨菌丝球-微藻耦合系统形成机制。研究成果对指导菌藻耦合系统的建立及其高效稳定运行有重要意义。
菌藻共生技术处理污水既是资源化技术,也是净化污水的有效途径。但是目前工艺应用存在悬浮式菌藻共生系统处理效率较低,及固定化过程中载体材料开发与选用较为困难等技术瓶颈。本项目提出以菌丝球作为微藻的生物载体材料,建立菌藻耦合固定化系统,从而达到提高共生系统的处理效率、增强剩余污泥资源化收益、降低固定化成本和能源回收过程中物化杂质抑制影响等效果。基于此研究目标,项目提出菌藻耦合系统培养方法,建立其综合评价体系。在光生物反应器体系中,控制不同的运行条件进行菌丝球与微藻耦合系统启动研究,阐明环境与系统之间的相互关系,并以综合分析结论为依据,提出较为优化的系统建立控制策略。结合耦合系统的物理、化学和生物性质及结构表征,分析菌藻耦合系统协同效果及机理,探讨菌丝球-微藻耦合系统形成机制。结果表明,菌藻耦合系统能够有效去除污水COD、氮磷等污染物质,菌藻具有明显的协同效应,而且微藻的油脂含量对比单独微藻系统有一定增加,通过外界环境以及营养因素控制能够稳定、快速启动菌藻耦合系统,经过分析提出胞外聚合物粘连机制为耦合系统形成的主要原因。研究成果对指导菌藻耦合系统的建立及其高效稳定运行有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
好氧污泥-微藻耦合颗粒化系统建立与应用安全性研究
膜乳化耦合溶剂挥发法制备微球的方法学研究及微球性质间关联规则模型的建立
盐藻遗传转化系统的建立
溶藻细菌对铜绿微囊藻的溶藻机理及对微囊藻毒素的降解研究