To maintain the long-term stable grinding performance of the abrasive tools in precision machining, is an important guarantee for achieving the integrated manufacturing objectives of the consistency of profile accuracy and surface quality of the high-performance components, and the existing processing methods have been difficult to meet the needs of practical applications. This will directly affect the service life and reliability of the high-end equipments. Consequently, combined with the unique processing advantages of abrasive belt grinding, a new grinding method will be proposed under harsh conditions to achieve the automatic update and more excellent grinding performance of the abrasive belt based on taking the very difficult aero-engine blisk (especially the root) as the research object in this project. Subsequently, the interaction between grains and workpiece, the material removal and surface formation, abrasive wear and its renovate law will be investigated under the flexible contact state in grinding process, in order to reveal the multi-parameter influence laws and the coupling mechanism for integrated manufacturing target optimization. On the basis of the theoretical research mentioned above, a precision grinding strategy will be presented for the realization of the multi objective optimization of blisk, and then an optimized process model for the new type of abrasive belt grinding of a typical aero-engine blisk will be established. This study will be a breakthrough in abrasive belt grinding theory of the traditional concept, also will be an innovation of the precision machining technology in small space with variable curvature radius. Additionally, it holds great theoretical significance and application value for improving the precision machining capability of high-performance components involved in the key development areas of national defense.
磨具在复杂曲面精密加工过程中保持长期稳定的磨削性能是实现高性能构件型面精度和表面完整性及其一致性的综合制造目标的重要保证,现行的加工方法难以满足实际应用需求,直接影响了高端装备的服役寿命及可靠性。本项目以高难度航空发动机整体叶盘(特别是其根部)精密磨削为研究对象,结合砂带磨削独特的加工优势,提出一种能在苛刻条件下实现砂带自动更新且性能更优异、磨削过程更稳定的新型磨削方法;研究新型磨削过程中柔性接触状态下磨粒-工件交互作用、材料去除及表面创成、磨粒磨损及更替规律,揭示面向综合制造目标优化的多参数影响规律及其耦合机制;研究实现整体叶盘精密磨削加工的策略,建立典型航发整体叶盘新型砂带磨削工艺优化模型。该研究是对传统概念的砂带磨削理论的突破,也是对狭小空间变曲率小半径内R精密磨削加工技术的革新,将对提高国防重点发展领域涉及的高性能构件精密加工能力与水平具有重要的理论意义和应用价值。
针对传统的砂带磨削方法加工整体叶盘等高性能构件时,存在砂带使用寿命不足、小曲率半径磨削状态下磨粒磨损严重等问题,难以保持长期稳定的磨削性能。本项目提出了一种能在苛刻条件下实现砂带自动更新且性能更优异、磨削过程更稳定的新型磨削方法,建立了砂带磨削新方法双动力往复同步复合运动的控制模型,采用动力学仿真对设计的由磨具、接触轮、张紧轮等构成的磨削系统进行了静力学、运动学和动力学建模与分析,优化并确定了砂带磨削系统的机械结构方案;建立了单颗磨粒切削钛合金材料界面摩擦过程的数学模型,并进行了单颗磨粒柔性切削工件材料的有限元仿真分析与研究,研究了曲率往复更新复合磨削下材料去除行为,及其对工件加工精度与表面完整性的影响规律,实现了对表面完整性的参数化模型修正,进而建立了磨削工艺参数与磨具性能衰变对型面加工精度与表面完整性影响的预测模型;研究了系统状态误差反馈,实现了磨削力控制系统对外界干扰及系统模型误差的补偿,采用了对偶四元数建立力位轨迹离散矢量,实现了力位轨迹的滑动修正,提出了利用加工仿真软件对柔性磨削过程进行数字化描述与动态分析;建立了虑及磨削压力、磨削速度、进给速度、磨具类型、工件几何特征等多调控参数与型面精度、表面质量与加工效率等指标参数的精准映射模型;搭建了磨削实验平台,研究了磨抛系统的动态响应特性及稳定性,验证了磨削装置机械结构设计及运动控制模型的正确性和可靠性,建立了面向加工效率和表面完整性及其一致性等多目标优化的新型砂带磨抛工艺规划模型。该研究成果为解决系列高性能构件非线性不确定条件下的精密磨削难题提供了理论基础与技术支撑,对扩大砂带精密磨削技术的应用领域和提高国防重点发展领域关键功能零部件的加工能力与水平具有重要的理论意义和应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
转录组与代谢联合解析红花槭叶片中青素苷变化机制
基于多模态信息特征融合的犯罪预测算法研究
坚果破壳取仁与包装生产线控制系统设计
航发钛合金叶片纵向砂带磨削表面完整性及其疲劳寿命影响机制
面向IC新封装技术的超薄晶圆磨削机理及技术基础
基于柔顺力控制的航发叶片边缘七轴联动数控砂带磨削方法及实验研究
航发叶片型面的自适应几何偏差砂带磨削方法及其关键技术研究