The shape, structure and size design freedom were expanded in the product design process for the application of additive manufacturing technologies. Moreover, the mechanical and environmental performance of 3D printing components were improved for the application of structure optimization compared with traditional manufacturing processes. The main purposes of the current structure optimization of large sized components are improving the mechanical performance and reducing the weight. Nevertheless, the structural machinability and environmental performance are not seriously considered in the process of optimization design, which reduced the environmental friendly advantages of 3D printing. In this project, typical deposition 3D printing technology was taken as the main studying object. The 3D printing technology and carbon emissions are integrated as the constraints in the large sized structural optimization design method. The mathematical model of topology optimization problem and topology optimization algorithm will be established, which are suitable for 3D printing components structural topology optimization. The mapping mechanism among “structural features - manufacturing process - carbon emissions” of 3D printing components will be explored. In the end, the 3D printing - oriented large sized components of the structure low carbon design technologies will be created. The research of this project can provide a foundation for improving the structural machinability, environmental performance and reducing the material consumption.
增材制造技术的应用使得产品零部件在形状、结构和尺寸等方面获得了更大的设计自由度。相比传统的等材、减材制造而言,其在利用结构优化技术改善大型构件的机械和环境性能方面存在更大的潜力和价值。但现有的关于3D打印大型构件的结构优化设计主要以保障零件的机械性能、实现轻量化为目的,对其结构工艺性和环境维度的考量不足。本项目以典型的沉积类3D打印工艺为例,研究面向3D打印的大型构件结构优化与低碳设计方法,建立适用于3D打印零件结构拓扑优化问题的数学模型和拓扑优化算法,探究3D打印零件“结构特征-制造工艺-碳排放”三者的映射机制,形成面向3D打印大型构件的低碳设计技术,为提升3D打印大型构件的结构工艺性和环境友好性提供技术保障。
增材制造技术能够制造出传统工艺无法加工的零部件,极大地解放了零件结构的设计自由度。但由于其制造自身工艺特征,其打印过程中材料及能量消耗量大,对于一些大型结构件的制造周期长,导致工艺能效低、成本高。通过优化成型构件的结构特征,使其适用于3D打印成型工艺,同时采用低成本绿色化再生材料作为打印原材料,可有效提高工艺能效、降低材料成本及其环境影响,具有经济和环境双重意义。本项目围绕增材制造成型过程装备能效分析、零件结构工艺性设计与材料再资源化利用,通过分析增材制造装备的能耗特征,建立了不同增材制造装备的能耗模型,实现了对增材制造装备在加工过程的能耗量化评估;提出了基于零件制造特征的增材制造零件工艺过程能耗建模方法,建立了典型结构特征的增材制造能耗模型,实现了增材制造零件加工能耗的快速量化评估;应用能值理论分析了增材制造过程的材料消耗、能量消耗,并将其化为统一指标来分析环境影响,定量评价了增材制造系统的可持续性;开发了以碳纤维复合材料废弃物为原料的高性能3D打印线材制备工艺,在降低打印成本与环境影响的同时有效提高了3D打印零件性能;开发了基于渐缩流体诱导纤维取向铺放的高性能再生碳纤维复合材料3D打印成型工艺,大幅度提升了3D打印零件的性能与功能可设计性;项目的研究不仅能够为增材制造成型装备能效优化、零件结构设计、3D打印材料回收再利用提供理论方法与技术支撑,对提高增材制造零件功能性、促进增材制造产业绿色高质量发展,实现我国制造业低碳化具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
玉米叶向值的全基因组关联分析
涡度相关技术及其在陆地生态系统通量研究中的应用
监管的非对称性、盈余管理模式选择与证监会执法效率?
硬件木马:关键问题研究进展及新动向
面向3D打印的自平衡结构计算设计方法
面向3D打印的物理建模与几何优化
面向3D打印的机械结构一体化再设计方法研究
重型机床大型结构件高强栓接松弛机理及优化设计方法研究