The frequency-domain analysis theory for linear active disturbance rejecton control(LADRC for short) is proposed in this project, and its application in the control strategy designing and performance optimization of networked cascade control systems (NCCSs for short) is also investigated. In the primary and secndary control loops of an NCCS, the network-induced delays are usually time-varying, and there also exist various disturbances. However, with the present control strategies adopted in the primary and secondary controllers of an NCCS, the performance imporvement is limited or they are difficult to implement. The LADRC proposed by Zhiqiang Gao is usually employed to deal with time-varying uncertain processes with disturbances, and it is easy to implement in practical engineering problems. However, the fundamental reason for the strong robustness and excellent disturbance rejection ability of the LADRC in time-domain is seldom reported from the perspective of frequency-domain analysis. In the preliminary research of the project, the transfer function of the arbitrary order LADRC was proposed and the theoretical evidence for the excellent frequency characteristics of the LADRC was discovered, and the frequency-analysis thoery of LADRC will be proposed. The time-varying delays in the primary and secondary loops of the NCCS are transformed into the corresponding transfer functions by employing the multi-resolution wavelet analysis and Páde approximation. Then the allowable ranges of the tuning parameters of LADRC in the primary and secondary controllers are identified, followed by the mutative scale chaos optimization algorithm used to optimize the system performance of the NCCS. The effectiveness and robustness of the proposed approaches will also be validated by the computer simulation and semi-physical simulation tests. This project will create a new channel of frequency-domain analysis of LADRC, and provides a new approach for the control strategy design and performance optimization of NCCS.
本项目提出线性自抗扰控制的频域分析理论并探索其在网络化串级控制系统控制策略设计与性能优化中的应用。网络化串级控制系统主、副回路中的网络诱导时延一般是时变的,且存在各种扰动,采用现有控制策略改善性能效果有限或工程实现困难。高志强提出的线性自抗扰控制理论适合处理有扰动的时变不确定对象且便于工程实现,但从频域分析其时域具有较强鲁棒性和抗干扰性的根本原因还很少报道。前期研究中,提出任意阶线性自抗扰控制器的传函并发现了线性自抗扰控制器优良频率特性的理论依据,拟提出频域分析理论。采用多分辨率小波分析和Páde近似将主、副回路中时变时延转化为传函形式,确定主、副线性自抗扰控制器整定参数的取值范围,采用变尺度混沌算法优化系统性能,并通过计算机仿真和半实物仿真试验验证所提算法的有效性和鲁棒性。本项目将为线性自抗扰控制理论开辟新的频域分析通道,为网络化串级控制系统控制策略设计与性能优化提供新的思路和方法。
线性自抗扰控制理论因其较强的抗干扰性和鲁棒性近年来在很多领域工程应用中得到了广泛的应用,探索其对应的频域分析理论及其在时延网络化串级控制系统中的应用对于促进其实际应用具有极其重要的理论研究意义和工程实践价值。 . 本项目首先从推导出了任意阶线性自抗扰控制算法对应的传递函数方框图,进而构建了任意阶线性自抗扰控制算法的基本原理及其对应的频域分析理论,从频域角度揭示了该算法时域具有优良性能的根本原因,并通过开展计算机数字仿真实验分别从时域和频域角度验证了结果的正确性。然后探索了任意阶线性自抗扰控制算法的仿真实现方法,提出了基于混杂粒子群优化算法、万有引力优化算法、递减步长果蝇优化算法等各种智能优化算法的线性自抗扰控制理论参数整定优化算法。针对存在网络诱导时延的网络控制系统,提出了基于Lyapunov-Krasovskii泛函和鲁棒H∞控制理论的闭环系统稳定性准则,设计了相应的鲁棒控制器,通过开展计算机仿真试验验证了该算法的有效性和鲁棒性。本项目自主研发设计构建了一套基于PLC的线性自抗扰控制算法试验验证平台,采用梯形图组态设计并实现了离散时间线性自抗扰控制算法,探索了线性自抗扰控制算法与传统PID控制算法、手动控制算法之间实现任意无扰切换的基本原理及实现方法,通过设计上位机监控画面实际操作验证了该算法的可行性。. 基于DCS过程控制试验平台探索了算法的工程实现问题,在600MW超临界发电机组工程现场探索了线性自抗扰控制算法的DCS工程应用问题,开展大量工程试验验证了该算法应用于工程实际的可行性和有效性,为继续深入推进所研究算法在工程实际中应用的可行性奠定基础;此外,还通过邀请多位国际抗扰控制理论专家来校访问交流,熟练掌握了两种新型自抗扰控制理论:微分平坦自抗扰控制理论和嵌入式模型控制理论的基本思想及其仿真实现算法,为今后进一步拓宽研究领域、提升研究水平奠定了坚实基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
跨社交网络用户对齐技术综述
粗颗粒土的静止土压力系数非线性分析与计算方法
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
网络化串级切换系统的跟踪控制
基于等价输入干扰方法的非线性控制系统抗扰性能分析和设计
面向估计性能优化的网络化控制系统传感器调度
几类具有复杂不确定性的随机非线性系统的自抗扰控制与性能分析