新的互补函数在二阶锥互补问题的算法及应用研究

基本信息
批准号:11626212
项目类别:数学天元基金项目
资助金额:3.00
负责人:马鹏飞
学科分类:
依托单位:浙江科技学院
批准年份:2016
结题年份:2017
起止时间:2017-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:施英,房启全,钱亚冠
关键词:
神经网络二阶锥二阶锥互补问题互补函数
结项摘要

In recently years, second-order cone complementary problem has important applications in engineering problems and robust Nash equilibria. In particular, it also arises from optimality conditions of the nonlinear second-order cone programming. So theory and algorithm of second order cone complementary problem attract the great attention of the researchers. Recently the applicant and Chen JienShan etc. present a class of new complementary functions. Based on new complementary functions, we will study proximal point method and merit function method for second order cone complementarity problems, compare numerical results of such complementary functions with the existence of the complementary functions in this project. Finally, these complementary functions in the application of second-order cone programming is studied in terms of neural network.

近年来由于二阶锥互补问题在工程问题和鲁棒纳什均衡等方面有重要的应用,特别是出现在二阶锥规划的最优性条件中,因此研究二阶锥锥互补问题的理论和算法得到研究者的极大关注。最近申请人和陈界山等等提出了一类新的互补函数。本项目将研究使用此类互补函数求解二阶锥互补问题的临近点算法和效益函数法等,比较此类互补函数同存在的互补函数的数值效果,最后我们将研究此类互补函数使用神经网络求解二阶锥规划。

项目摘要

近年来由于二阶锥互补问题在工程问题和鲁棒纳什均衡等方面有重要的应用,特别是出现在二阶锥规划的最优性条件中,因此研究二阶锥锥互补问题的理论和算法得到研究者的极大关注。本项目主要研究一类新的互补函数在求解二阶锥互补问题的效益函数法和临近点算法,比较此类互补函数同存在的互补函数的数值效果,最后我们将研究此类互补函数使用神经网络求解二阶锥规划。..目前本项目已经使用此类互补函数已经设计了求解二阶锥互补问题的一个效益函数法,通过数值实验发现算法受互补函数中的参数p的影响较大。当参数p小于等于5时,算法与现有的互补函数有着类似的数值表现,但参数p大于等于7时,算法由于效益函数下降太快,步长太小计算失败。基于此结果,我们算法应使用此类互补函数设计新的效益函数期望获得更为满意的数值结果。..本项目的研究具有一方面具有重要的理论意义,能够为二阶锥互补问题提供新的求解思路和有效算法;另外一方面本文的研究也具有重要的应用价值,能够给二阶锥规划的求解提供新的思路和算法,同时在工程领域有着潜在的应用价值。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
2

一种改进的多目标正余弦优化算法

一种改进的多目标正余弦优化算法

DOI:
发表时间:2019
3

多源数据驱动CNN-GRU模型的公交客流量分类预测

多源数据驱动CNN-GRU模型的公交客流量分类预测

DOI:10.19818/j.cnki.1671-1637.2021.05.022
发表时间:2021
4

一种加权距离连续K中心选址问题求解方法

一种加权距离连续K中心选址问题求解方法

DOI:
发表时间:2020
5

基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断

基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断

DOI:10.13382/j.jemi.B1902452
发表时间:2020

相似国自然基金

1

随机二阶锥互补问题理论与算法研究及其应用

批准号:11501275
批准年份:2015
负责人:罗美菊
学科分类:A0405
资助金额:18.00
项目类别:青年科学基金项目
2

非线性二阶锥优化与互补问题的FB-型算法研究

批准号:10901058
批准年份:2009
负责人:潘少华
学科分类:A0405
资助金额:16.00
项目类别:青年科学基金项目
3

关于二阶锥互补约束数学规划问题的约束规范和算法研究

批准号:11426096
批准年份:2014
负责人:梁彦超
学科分类:A0405
资助金额:3.00
项目类别:数学天元基金项目
4

二阶锥上张量特征值互补问题的理论与算法研究

批准号:11801430
批准年份:2018
负责人:刘丽霞
学科分类:A0405
资助金额:21.00
项目类别:青年科学基金项目