The electrical property studies on silicon-based quantum structures are not only an important subject for fundmental basic researches, but also play an important role in the applications such as photoelctrical communications and quantum information. The project will apply the scanning probe microcpy related techniques, including conductive atomic force microscopy, electrostatic force microscopy, scanning capacitance microscopy, scanning Kevlin microscopy and ac current-sensing atomic force microscopy, to study the electrical properties of single Si-based quantum strucutures including GeSi quantum dots and quantum rings, and Si nanowires. After the comprehensive studies on electrical properties,we will try to reveal both the relationships between the different electrical properties and the correlations between the electrical properties and the micro-structure parameters of the quantum structures, and to find out the intrinsic physical mechanisms. Based on the studies on single quantum structures, researches will be performed on studying the coupling effects between the single quantum structures, as well as the influences of the coupling effects on their electrical properties. Meanwhile efforts will be made to explore the novel electrical phenomena, properties and mechanisms of the coupled quantum strucutres,and fianally to find out the ways to regulate the properties. Also the influences of electrical properties by the electric or magnetic fields, surface modifications, doping or other factors will be studied, to discover the regularities in the influences of the electrical properties by extraneous actions, and finnaly to find out the possible pays to regulate the electrical properties of these quantum strucutures. Therefore, the researches of this project have both important scientific meanings and potential application values.
硅基单量子结构及其耦合体系的电学性质研究,是微观量子体系研究的重要基础课题,同时也是实现它们在光电通讯、量子信息等领域应用的关键环节。本项目将利用扫描探针显微镜的相关技术,包括导电原子力显微镜、静电力显微镜、扫描电容显微镜、扫描开尔文显微镜、交流电流检测原子力显微镜等,系统地研究GeSi单量子点、单量子环及单根Si纳米线等硅基单量子结构的多种电学特性,揭示各种电学性质之间的内在关联以及电学性质对量子结构基本参量的依赖关系,探讨其中的物理机制。在此基础上,将研究单量子结构之间的耦合效应以及耦合效应对电学性质的影响,探索这些耦合体系新的物理现象、特性和机制,实现对量子耦合结构性质的调控。研究外加电场或磁场、温度、表面改性、掺杂、环境因素等外界作用对量子结构电学特性的影响,探索对量子结构电学性质进行调制的方法。因而本项目的研究具有重要的科学意义和潜在应用价值。
硅基单量子结构及其耦合体系的电学性质研究是微观量子体系研究的重要基础课题,同时也是实现其在光电器件、量子通讯等领域应用的关键环节。传统的物理特性研究方法,很难得到单个量子结构的物理特性。本项目利用扫描探针显微镜的相关技术,包括导电原子力显微镜、静电力显微镜、扫描电容显微镜、扫描开尔文显微镜等,获得了GeSi单量子点、单量子环以及单根Si纳米线等硅基单量子结构的多种电学特性,并对各种电学性质之间的内在关联以及电学性质对量子结构基本参量的依赖关系及其物理机制进行了探讨。在此基础上,研究了单量子结构之间的耦合效应以及耦合效应对电学性质的影响,以及激光照射及温度改变等外界作用对单量子结构电学特性的影响,并对调制量子结构电学性质的方法进行了探索。这些结果不仅深化了对单量子结构的物理认识,还可以为Si基量子结构的电学性质调控及基于单个Si基量子结构的器件设计提供科学的依据。项目执行期间,共发表项目标注SCI论文14篇,获得发明专利2项,新型实用专利1项,培养博士生1人,硕士生2人。
{{i.achievement_title}}
数据更新时间:2023-05-31
High Performance Van der Waals Graphene-WS2-Si Heterostructure Photodetector
基于被动变阻尼装置高层结构风振控制效果对比分析
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
基于改进LinkNet的寒旱区遥感图像河流识别方法
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
单个GeSi量子点和量子环的微区电学性质研究
基于单量子点与微腔精确耦合的硅基单光子光源器件
利用STM对功能结构单分子体系的量子输运性质研究
微腔与单量子点耦合单光子发射量子相干探测及器件制备