Cognitive model is a computer model based on the theory of cognitive psychology, which can reflect the thinking mechanisms and cognitive processes of human beings. These kind of model can acquire learned knowledge from recessive experience. This study has a fundamental and strategic role in the experience inheritance of the famous veteran doctors of TCM research, but there are some basic construction methods and key issues to be solved. The research proposes cognitive model construction methods and focuses on how to solve the problems of knowledge immobilization, relationship description, cognitive elements extraction, cognitive style analysis. The large sample medical cases of lung cancer which diagnosis and treatment by doctor Bingkui Piao is selected as the starting point of the study. We choose the supervised learning (Bayesian networks, support vector machine) and unsupervised learning (clustering analysis, association rules) methods with the WEKA software of machine learning to describe the condition probability as quantitative results from experience and academic thinking of Bingkui Piao. It can describe the contribution in the respective network of disease, syndrome, disease, therapeutics, prescription and herbs in holistic thinking of TCM. We build the specific cognitive models of doctor Bingkui Piao academic thinking, treatment principles of supporting vital-qi and clinical experience on diagnosis and treatment of lung cancer. This study also introduce the test set evaluation and subjective evaluation to carry out the simulation and optimization applied Research. Our study helps to explore the way and method of TCM 'experience' into 'knowledge', and provide the foundation for the clinical decision-making system of cancer.
认知模型是基于认知心理学理论,反映人类思维机制和认知过程的计算机模型,能从隐性经验中获得可学习的知识,在名老中医传承研究中具有基础性、战略性地位,但其构建方法仍有一些基础性和关键性问题亟待解决。本研究是为解决名老中医传承知识固化、关系描述、认知要素提取、认知风格分析等问题而提出的模型构建方法研究。研究以朴炳奎诊治肺癌大样本医案数据为切入点,借助WEKA机器学习软件,通过监督学习(贝叶斯网络、支持向量机)和无监督学习(聚类分析、关联规则)方法,以“条件概率”等量化结果表示出中医“病-证-症-法-方-药”整体思维在各自网络关系中贡献度,构建朴炳奎诊治肺癌核心学术思想、扶正培本治则、辨病、辨证、立法、处方、用药经验等具体认知模型,并引入测试集评价、主观评价对认知模型开展仿真应用与优化研究。以期探索中医“经验”向“知识”转化途径和方法,为开发肿瘤防治名老中医临床决策系统提供基础。
认知模型是基于认知心理学理论,反映人类思维机制和认知过程的计算机模型,能从隐性经验中获得可学习的知识,在名老中医传承研究中具有基础性、战略性地位,但其构建方法仍有一些基础性和关键性问题亟待解决。研究以朴炳奎诊治肺癌大样本医案数据1323例作为训练集,借助WEKA 机器学习软件,通过监督学习(贝叶斯网络、支持向量机)和无监督学习(聚类分析、关联规则)方法构建朴炳奎诊治肺癌核心学术思想、扶正培本治则、辨病、辨证、立法、处方、用药经验等具体认知模型。以朴炳奎诊治肺癌医案数据200 例作为测试集,对认知模型进行测试和仿真应用,对其分类结果与准确度进行评价。研究最终共纳入朴炳奎诊治肿瘤病例1523例,肺癌病例1026例,对炳奎名老中医诊治肺癌医案1026个实例,53项属性以"脾肺两虚"证作为分类属性进行贝叶斯网络分析,分类准确率达72.51%,Kappa值0.1943,发现病-证-症-法-方-药之间的结构关系57条,其中条件概率大于0.6的条目包括(括号中为条件概率值):心悸(0.9844),痰多(0.98304),胸痛(0.97354),夜尿频数(0.97083),头晕(0.96676),胸闷(0.93148),乏力(0.76866),咳嗽(0.64383)。对"痰浊阻肺"作为分类属性进行基于支持向量机的SMO分析,分类准确率达93.27%,Kappa值0.8127,并得出证-药之间的权重关系,其中阈值=-2.2358,权重绝对值较高的药物有(括号中为权值):薤白=NO(1.7429),瓜蒌=NO(1.5964),升麻=YES(1.411),法半夏=NO(0.9448),菟丝子=YES(0.7565),鱼腥草=YES(-0.6704),沙参=NO(-0.7095),菖蒲=YES(-0.7795),百合=YES(-0.8329),射干=YES(-3.0207)。并得出沙参、生黄芪、土茯苓、半枝莲等药物认知模型50余组,其中沙参SMO分类准确率达88.01%,Kappa值0.5866;生黄芪分类准确率达93.96%,Kappa值0.1096。名老中医诊治肺癌认知模型作为应用基础研究,其成果一方面可以客观、可靠、高效、系统的总结、整理、提炼、挖掘、阐释老中医药专家学术思想、临床经验及思维认知规律,另一方面为进一步开发名老中医防治肿瘤中医药决策辅助系统提供基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
基于SSVEP 直接脑控机器人方向和速度研究
伴有轻度认知障碍的帕金森病~(18)F-FDG PET的统计参数图分析
中国参与全球价值链的环境效应分析
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
基于原型范畴理论名老中医诊治肺癌认知模型优化研究
基于名老中医经验的中医智能诊疗模型构建研究
基于中医临床大数据的名老中医诊治慢性肾脏病经验挖掘方法的应用研究
注意力机制下的名老中医诊疗经验知识发现与问答模型构建方法研究