Basing on our previous researches on Mg-based hydrogen storage materials holding high activity and high capacity prepared by the process of hydriding combustion synthesis (HCS) followed by mechanical milling (MM) and focusing on the remained problems of several cycles of hydrogen absorption only even capacity of 6.44 wt.% at 373 K and 523 K for 100% hydrogen desorption still even 150 K of on-set temperature decreased already, this project proposes a new research idea of Nano Mg-based hydrogen storage materials with high activity and antioxidation nano-confined by polymer based on the process of Hydriding Combustion Synthesis and Mechanical Milling: that is, selecting polymer as the nano-dispersion and milling controller in MM process, to enhance the nano-structure effect and to improve the thermodynamic stability further; using encapsulation with hydrogen permeable oxygen nonpermeable polymer membrane, to resist the oxidation on the high active nano-particle surface and to retain the kinetic property of hydrogen absorption at low temperature; relying on the nano-confined mechanism of membrane encapsulation, to reinforce the anti-recrystallization ability of nano-particle and to increase the cycle stability of hydrogen storage. This project will research deeply on the alteration of hydrogen permeable oxygen nonpermeable polymer, the optimization of preparation process, the characterization of microstructure, the improvement of hydrogen storage property and the explanation of hydrogen storage mechanism. The innovative results achieved by this project will have significant academic value and well prospective application for the development of high performance Mg-based hydrogen storage materials with independent knowledge property of China.
根据课题组前期氢化燃烧合成与高能机械球磨(HCS+MM)制备高活性高容量镁基储氢材料的存在问题:HCS+MM产物,虽在373K,100秒内吸氢高达6.4wt.%,但只能维持几个循环;虽放氢初始温度降低150K,但100%放氢仍需523K;本项目提出基于HCS+MM聚合物纳米限域高活性抗氧化纳米镁基储氢材料的研究新思路:构建聚合物纳米限域结构,增强HCS+MM产物纳米颗粒抗再结晶能力,提高吸放氢循环寿命;利用透氢抗氧聚合物膜包覆,提高HCS+MM产物高活性纳米颗粒抗氧化能力,保持低温吸氢动力学特性;以聚合物为MM过程控制纳米分散助剂,强化MM纳米化效率,进一步改善镁基储氢材料热力学稳定性。本项目将在聚合物改性、制备工艺探索、微观结构表征、储氢性能改善和储氢机理阐明等方面开展深入系统的研究,取得创新性成果;对于推动具有我国自主知识产权新型高性能镁基储氢材料的研发,具有重要的理论意义和实用价值。
本项目针对氢化燃烧合成高能机械球磨(HCS+MM)制备高活性高容量镁基储氢材料:虽在373 K100 s内吸氢高达6.4 wt.%,但只维持几个循环;虽放氢初始温度降低150 K,但100%放氢仍需523 K,提出HCS+MM聚合物纳米限域高活性抗氧化纳米镁基储氢材料的研究新思路,着重研究了:1、聚合物纳米限域镁基储氢材料体系的选择和优化;2、纳米限域结构形成规律与制备工艺的依赖关系;3、纳米限域微观结构特征、储氢性能及其机理研究;4、聚合物纳米限域Mg基储氢合金的电化学储能性能。取得主要结果如下:1、确定了HCS制备Mg基储氢合金高能球磨纳米化工艺,添加5 wt.%球磨控制剂(WC, ZrC, TiC)的MM产物在~218 ℃下即可脱氢,添加TiC的产物储氢循环性能最优,10个循环后动力学和容量未见明显衰减(第1至10个循环均可在120 s内达到其饱和吸氢量的95%;10个循环后容量仍达饱和储氢量的98.3%),其不同组分协同效应改善机制为高活性复合储氢材料研发提供了新思路。2、探索了透氢抗氧聚合物(PMMA,PVP,PI)纳米限域Mg基储氢合金复合材料聚合物膜的干法球磨,湿法球磨,离心以及喷雾成膜工艺,其中表面包覆< 10 nm聚合物膜的Mg95Ni5纳米颗粒,暴露空气3周XRD分析仍未见明显氧化,为高活性纳米储氢材料的常温常态应用提供了可靠依据。3、透氢抗氧聚合物纳米限域有效抑制了镁基储氢合金纳米颗粒团聚再结晶长大,湿法球磨产物Mg95Ni5中MgH2平均晶粒尺寸从未限域的23 nm下降到1 wt.% PVP限域时的20 nm,且经7个吸放氢循环后平均晶粒尺寸仍在100nm以下,约为32 nm。4、考察了HCS+MM透氢抗氧聚合物(PMMA-MWCNTs)纳米限域高活性抗氧化镁基储氢合金(Mg3MnNi2)的电化学储氢性能,其中电极腐蚀电位和氢扩散系数分别由限域修饰前的-0.923 V和3.8×10-11 cm2/s增高至限域后的-0.74 V和3.93×10-11 cm2/s,表明其抗腐蚀性能显著增强,氢扩散良好。本项目研究达到了预期目标,发表SCI论文23篇(国际21篇,国内2篇),培养博士生3名,硕士生6名)。本项目成果对于推广HCS+MM技术应用,加快高活性高容量镁基储氢材料实用化进程,具有重要意义和价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
氯盐环境下钢筋混凝土梁的黏结试验研究
高活性镁基储氢合金的氢化燃烧合成机理
纳米复合镁基储氢材料热力学及动力学调控
纳米多孔金属氧化物限域的硼氢化物储氢性能研究
碳纳米管基高效储氢材料研制及其储氢机理研究