Based on the innovation in technology and process integration and optimization, the low-carbon coking energy conversion system is proved to be one of the core technologies for the efficient and clean conversion of energy in the coking industry. Focused on the energy and resources utilization and environmental protection, the project starts with the element complementation conversion and energy cascade utilization with the aim to realize the recycling, and emission reduction of CO2 as well as the organic coupling of the processes of coking production and chemical production. The primary object of the project is to make a research on the novel energy utilization ways based on the new low-carbon coking energy conversion system integrated with recycling of CO2. Its emphasis is also put on the effects of COX formation, transportation and enrichment on system energy flows, element flows and technological so as to reveal the intrinsic nature of energy saving, CO2 emission reduction and economic benefits increase of low-carbon coking energy conversion system in the lifecycle. With the combination of the theoretical calculation, process simulation analysis, and the industrial production site data, we will establish the energy system integrated optimization theory with CO2 recycling and emission control to meet the requirements of the energy production rationalization, the maximum elements utilization, the minimum environmental pollution, and the maximum economic benefit. On the basis of the above optimization theory and method, the technical innovation and optimum design of the novel low-carbon coking energy conversion system integrated with CO2 recycle use and emission control technology are proposed and investigated.
低碳导向焦化能源转化系统通过工艺路线革新和过程优化集成,是实现焦化行业能源高效洁净转化利用的核心技术之一。项目基于能源利用和环境保护,从元素互补利用和能量品位匹配角度出发,立足实现CO2循环转化利用减排控制、炼焦与化学品生产过程有机耦合一体化的能源利用模式为主要目标。考察COX生成、迁移、富集的变化对系统能流、元素流和工艺流程的影响,揭示全生命周期内低碳导向焦化能源转化系统节能,CO2减排和经济效益等提升的内在本质。采用理论计算、流程模拟分析、实验室核心单元过程验证与工业现场生产数据相结合,解决焦化行业生产链过程中能量利用合理化、元素利用最大化、环境污染最小化和经济效益最大化的整体最优工况。通过建立能源集成系统综合评价指标,凝炼系统集成优化准则和方法,实现新型低碳导向CO2循环转化利用减排控制一体化的焦化能源转化系统集成优化设计创新和开拓。
低碳导向焦化能源转化系统通过工艺路线革新和过程优化集成,是实现焦化行业能源高效洁净转化利用的核心技术之一,是解决当前焦化系统能耗大,碳排放高现实问题的重要手段。本项目通过分析焦化系统中COx的生成、迁移和富集过程中的能流、物流的变化,从元素互补利用和能量品位匹配角度出发,以实现CO2循环转化利用减排控制、炼焦与化学品生产过程有机耦合一体化的能源利用模式为主要目标。采用理论计算、流程模拟分析、实验室核心单元过程验证与工业现场生产数据相结合,研究了富碳氛围下焦炉煤气富氧燃烧特性及其温度场与流体场分布规律,初步提出了低碳焦炉装置的改造方案;基于商业化的二氧化碳循环转化利用及富氧燃烧技术,立足解决焦化行业产业链过程中的“排碳”和“补碳”矛盾,创新性提出了炼焦-污染物排放控制-化学品合成一体化的低碳循环焦化能源转化系统耦合机制、路线和方法,系统揭示了新型低碳焦化能源转化系统节能,CO2减排和经济效益等提升的内在本质;通过对不同产品导向的新型低碳焦化系统与CO2减排控制的集成与工艺优化研究,寻求实现产业链源头节煤节能,中间过程元素互补匹配、能量梯级利用,终端产品提质(值)和减排CO2的协同。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
基于碳足迹评估的城市能源利用低碳对策研究
低碳规划导向的LTA模型及其应用研究
我国地区间低碳发展与能源效率比较研究
城市能源系统碳排放时空分异特征及其低碳调控机制研究