Air spring is an ideal elastic element to replace metal spring, and solving the modeling and optimization problem of its hysteretic nonlinear dynamic characteristics under complex working conditions is the key point to break through the design, matching and industrialization of air spring. Aiming at the modeling and optimization problems of hysteretic non-linear dynamic characteristics of air spring considering the complex working conditions of different pressure and large amplitude, modeling of structural parameters and rubber bellows, and optimization of dynamic characteristics of air spring are studied in this project. Based on the orthogonal experiments of structural parameters of air spring, the sensitivity analysis of structural design parameters to the structural parameters of air spring are mainly studied, the key structural design parameters are determined and the prediction models of structural parameters of air spring based on key structural design parameters are established. Focusing on testing and modeling problems of the hysteretic nonlinear mechanical characteristics of rubber bellows, the experimental study, modelling and parameter identification methods of the hysteretic nonlinear mechanical characteristics of rubber bellows are developed. The hysteretic nonlinear dynamic model of air spring under complex working conditions are established. The influence laws of key structural design parameters, pressure factor, design parameters of rubber bellows on its hysteretic nonlinear dynamic characteristics and vehicle performances are revealed. A design method is proposed to optimize hysteretic nonlinear dynamic characteristics of air spring and to finally improve the dynamic characteristics of air suspension. The results of the project can lay a theoretical foundation for development of generic technology for design, matching of air spring and suspension lightweight with independent intellectual property rights.
空气弹簧是替代金属弹簧的理想弹性元件,解决其复杂工况下的迟滞非线性动态特性建模与优化问题是突破空气弹簧设计、匹配及产业化推广的关键所在。本项目针对计及不同压强和大振幅的复杂工况下空气弹簧迟滞非线性动态特性建模与优化问题,拟开展结构参数、橡胶气囊建模和空气弹簧动态特性优化研究。围绕空气弹簧结构参数设计正交试验,重点研究设计参量对结构参数的灵敏度,确定关键设计参量,建立基于关键设计参量的空气弹簧结构参数预测模型;针对橡胶气囊迟滞非线性力学特性测试、建模难题,开展橡胶气囊迟滞非线性力学特性的测试方法、建模和参数辨识方法研究,建立复杂工况下空气弹簧迟滞非线性动态模型;揭示关键设计参量、压强、气囊设计参数等对其动态特性及整车性能的影响规律,提出优化空气弹簧迟滞非线性动态特性以提高空气悬架动态响应特性的设计方法。项目成果必将为发展自主知识产权的空气弹簧设计、匹配及悬架轻量化共性技术奠定理论基础。
空气弹簧是车辆智能悬架的关键力元,也是替代金属弹簧的理想弹性元件,解决复杂工况下空气弹簧迟滞非线性动态特性建模与优化问题是突破空气弹簧设计、匹配及产业化推广的关键所在。本项目针对复杂工况下的空气弹簧迟滞非线性动态特性建模与优化问题,开展了空气弹簧结构参数建模、橡胶气囊迟滞非线性力学特性机理和空气弹簧动态特性优化研究。重点研究了结构设计参量对结构参数的灵敏度,确定了结构关键设计参量,构建了基于关键设计参量的囊式、膜式空气弹簧结构参数数学模型;针对橡胶气囊迟滞非线性力学特性测试、建模难题,开展了橡胶气囊迟滞非线性力学特性的间接测试方法、建模和参数辨识方法研究,建立了复杂工况下空气弹簧迟滞非线性动态模型;揭示了关键因素对其力学特性及整车性能的影响规律,提出了优化空气弹簧迟滞非线性动态特性以提高空气悬架动态响应特性的设计方法。项目成果为发展自主知识产权的空气弹簧设计、匹配及优化共性技术奠定基础。.本研究解决了空气弹簧迟滞非线性动态特性建模与优化的一些难题,取得了重要的进展。该项目完成学术论文9篇,其中8篇被SCI、EI检索且发表在本领域重要的期刊《Measurement》、《I.Mech.E,Part D.Journal of Automobile Engineering》、《机械工程学报》等上,主办、主持车辆底盘学术研讨会1次,授权国外专利3项、公开国内发明专利10项、软件著作权1项,开发空气弹簧力学特性计算程序1套,获中国物流与采购联合会科技进步二等奖、江西省汽车工程学会2020年学术年会论文一等奖,获批江西省自然科学基金项目1项,培养研究生6人;项目主持人担任中国机械工程学会高级会员、江西省汽车工程学会常务理事、IEEE Member、《现代制造工程》杂志专家委员会常务委员、World Electric Vehicle Journal客座编辑等,晋升副教授,并荣获赣州市科技创新人才与2021年博士后科研工作人员成绩突出个人光荣称号。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
粗颗粒土的静止土压力系数非线性分析与计算方法
内点最大化与冗余点控制的小型无人机遥感图像配准
空气电晕放电发展过程的特征发射光谱分析与放电识别
滴状流条件下非饱和交叉裂隙分流机制研究
汽车空气悬架迟滞非线性动力学特性及其分数阶主动控制
复杂工况下重型汽车的非线性动力学研究
基于轮胎复杂力学特性的汽车临界失稳工况下侧翻机理研究
复杂行驶工况下智能汽车稳定系统复合故障诊断方法研究