As an essential part of community resilience, the seismic resilience of building structures is referred to as the capability of restoring structural functionality after earthquakes. It includes two levels of performance target: 'recoverable' requires structures not to collapse or sustain unrepairable damage during earthquakes, while 'quick recovery' requires the structural function to restore as quickly as possible. Pin-supported wall-frame structural system provides an advantageous solution for higher seismic resilience. By making story drifts more uniformly distributed, pin-supported walls are robust to control the collapse pattern of building structures. On the other hand, energy dissipating devices located on both sides of a pin-supported wall can reduce the initial damage of building structures by dissipating earthquake input energy. More importantly, as components that are expected to concentrate seismic damage, the energy dissipating devices can be detailed to be replaceable or easy to repair if necessary after an earthquake, in order to improve seismic resilience. The proposed research project plans to comprehensively investigate the two levels of performance target of seismic resilience for pin-supported wall-frame structures by examining the collapse pattern and its control under earthquake, and exploring the replaceability of energy dissipating devices, through analytical, numerical and experimental efforts. It is also proposed to validate and demonstrate the performance of the structural system in terms of seismic resilience through large-scale shake table tests. As an academic while practical effort dealing with the specific pin-supported wall-frame structures, it is expected to promote researches on seismic resilience in a wider scope in our country.
作为社会恢复能力的重要基础,建筑结构的地震恢复能力是指建筑结构在遭遇地震后恢复正常结构功能的能力。它包括两个层次:"可恢复性"要求结构在遭遇地震后不倒塌或被迫拆除;"可快速恢复性"则要求尽量缩短建筑结构受损后的修复时间。框架-摇摆墙消能减震结构在提高地震恢复能力方面具有优势。一方面,摇摆墙作为竖向整体型关键构件可有效地控制结构倒塌机制,提高结构的抗倒塌能力;另一方面,摇摆墙两侧的消能器作为预期损伤集中的部位,可通过耗散地震输入能量减小结构的初始损伤,当采用合理的可拆装式连接节点时,如有必要还易于维修或更换,提高结构的地震恢复能力。本项目采用理论推导、数值模拟和结构试验手段,通过揭示倒塌机制控制原理和研究消能器的可更换性,考察该结构体系在可恢复和可快速恢复两个方面的能力,综合验证其地震恢复能力。以框架-摇摆墙消能减震结构为切入点,本项目有助于推动地震恢复能力研究在我国的发展。
作为社会恢复能力的重要基础,建筑结构的地震恢复能力是指建筑结构在遭遇地震后恢复正常结构功能的能力。框架-摇摆墙消能减震结构在提高地震恢复能力方面具有优势。一方面,摇摆墙作为竖向整体型关键构件可有效地控制结构倒塌机制,提高结构的抗倒塌能力;另一方面,摇摆墙两侧的消能器作为预期损伤集中的部位,可通过耗散地震输入能量减小结构的初始损伤,当采用合理的可拆装式连接节点时,如有必要还易于维修或更换,提高结构的地震恢复能力。本项目以提高建筑结构的地震恢复能力为总目标,着力解决框架-摇摆墙结构在功能“可恢复”和“可快速恢复”两个层次的理论与应用问题。本项目主要开展了以下方面的研究:(1)框架-摇摆墙结构的抗薄弱层倒塌能力研究,阐明了竖向构件和水平构件之间的刚度级差和承载力级差对框架-摇摆墙结构地震倒塌机制和抗倒塌能力的影响,并在此基础上,建立了框架-摇摆墙结构中的摇摆墙的刚度需求和承载力需求的简化计算方法;(2)框架-摇摆墙结构的快速修复能力研究,提出了一种可快速修复的摩擦型阻尼器,完成了摩擦型消能器单轴往复加载试验和采用摩擦型消能器的剪切耗能型消能器的子结构试验体往复加载试验;(3)框架-摇摆墙结构地震恢复能力的综合检验,完成了一组框架-摇摆墙整体结构模型的地震模拟混合试验,考察了该体系的整体抗震性能、框架部分和摇摆墙之间的相互作用以及二者的协同工作性能。项目研究内容和成果充分证明了框架-摇摆墙结构在地震恢复能力方面的优势,并为该新型韧性结构体系的推广应用奠定了理论基础。结合项目研究取得的相关成果达到了预期指标的要求。
{{i.achievement_title}}
数据更新时间:2023-05-31
自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
地震作用下岩羊村滑坡稳定性与失稳机制研究
混采地震数据高效高精度分离处理方法研究进展
装配式混凝土框架-双肢摇摆墙结构地震韧性设计和评估
钢筋混凝土框架-摇摆墙新型结构体系研究
新型框架阻尼填充墙结构的减震机理和性能研究
消能冗余伸臂框架—芯筒体系的损伤破坏与减震控制研究