Space-based robot system, workd as an important tool in space activities, is expected to play important roles in future, such as working as astronaut to take on space tasks and space scientific experiments and to construct space stations, and retrieving, repairing, maintaining of satellites in earth orbit and active removal of space debris, etc. In wartime, it could be an effective weapon for seizing and destroying enemy satellites. So it has received increased attentions. Because the position and attitude of the base of space-based robot system are not actively controlled during arms activity to conserve attitude control fuel, the linear momentum and the angular momentum of the system are generally conserved during the operation, further more the angular momentum conservation are non-integrable. Besides, the flexibility of the joints and arms of space-based robot system can not be ignored, because of the important demands for low energy consumption and the limited carrying capacity of space rockets. All these make the dynamics, control and suppressing of the elastic vibration of space-based robot system with flexible-joint and flexible-arm to be extremely complicated compared with the counterpart of fixed-base robot system. It develops many challenging problems that need to be solved. In this research project, the dynamic peculiarities of space-based robot system with flexible-joint and flexible-arm will be studied. The difficulties of the nonholonomic dynamics and the flexibility in control system design of space-based robot system with flexible-joint and flexible-arm will be overcome, and the control schemes, which space-based robot system is needed to manipulate in outer space, and the suppressing schemes of the elastic vibration of flexible-joint and flexible-arm will be designed.
做为航天活动的重要工具,空间机器人被期望在未来发挥更重要的作用,如替代宇航员完成太空作业、太空实验、大型空间站的在轨组装,以及释放、回收与维修失效卫星等工作;在战时则具有俘获、破坏敌方各类卫星系统等能力;因此成为空间技术大国争相研究的重点。由于空间机器人的载体处于太空失重状态,系统满足动量守恒、动量矩守恒或两者均守恒的动力学约束(后者还是非完整动力学约束);且由于技术和发射费用等原因,其驱动关节及机械臂的柔性亦不可忽略!因此受关节及机械臂双重柔性影响的漂浮基空间机器人的运动精确控制及柔性振动主动抑制问题变得非常复杂,提出了许多有挑战意义的新问题。我们将在对漂浮基柔性关节、柔性臂空间机器人系统动力学特性深入分析基础上,克服非完整动力学约束与关节柔性、机械臂柔性的引入对控制系统设计产生的三重不利影响,给出各种工况下空间机器人精确完成各类在轨任务操作及双重柔性振动主动抑制的系列智能控制方案设计。
做为得力助手,空间机器人在国际空间站发挥重要作用,并因此受到全世界研究人员的广泛关注。为此在国家自然科学基金项目的资助下,我们在研究中,全面、系统地分析、建立了多种形式的柔性关节、柔性臂空间机器人系统动力学模型,以满足不同工况任务操作控制系统设计要求。在此基础上,我们面对系统存在不确定、未知惯性参数,外部扰动、关节输出力矩受限、关节驱动器存在死区、关节驱动器部分失效等多种复杂情况,给出了柔性关节、柔性臂空间机器人各类任务操作要求下基于奇异摄动理论的积分滑模控制、L2增益鲁棒控制、基于动态滑模与线性观测器的鲁棒控制、L2增益抗扰鲁棒反演控制、Terminal滑模控制、自适应时变滑模控制、分散自适应滑模控制、基于非线性干扰观测器的退步自适应滑模控制、模糊控制、参数自整定模糊H∞控制、自适应模糊H∞控制、基于时延估计的鲁棒H∞控制、小脑递归神经网络控制、基于Luenberger观测器的神经网络控制、抗死区积分滑模神经网络控制、抗死区高斯基神经网络模糊自适应控制、抗死区与摩擦CMAC神经网络控制、分散神经网络容错控制、基于时延估计的容错控制、输入力矩受限情况下基于关节柔性补偿器与L2增益的鲁棒控制、基于柔性补偿的模糊神经网络H∞控制、基于关节柔性补偿与非线性干扰观测器的L2退步控制等相关控制方案和相应的柔性振动主动抑制方法。为关节、臂均存在柔性情况下空间机器人高精度运动控制系统设计提供了比较丰富的理论选择方案。比较而言,项目完成的上述研究工作可以说是目前国内外柔性关节、柔性臂空间机器人方面最全面、最系统的!
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
漂浮柔性基、柔性关节空间机器人的动力学与奇异摄动混合控制研究
多柔性臂空间机器人系统的动力学、控制
空间柔性机械臂的非线性动力学及运动/振动控制
具有弯扭耦合的空间多连杆柔性机械臂振动主动控制研究