Recently,Higher-order structure has been paid much attention to Poisson manifolds and mathematics physics.The preliminary investigations have been carried out for the algebraic and geometric structures of higher-order homogeneous Courant algebroids and the (p,k)-Dirac structure with higher-order homogeneous Courant brackets has determined. Consequently, the perfect unification between the Nambu-Poisson manifolds and n-plectic geometry is given. But there are many scientific problems to research. Based on these theories, the relationship among the first Pontryagin of higher-order homogeneous Courant algebroids, the derformations of cohomology groups and higher-order categories will be investigated. From the continuous studies, the integrability issues for the corresponding higher-order homogeneous and non-homogeneous structures in the physics will be resolved. In addition, the relations among higher-order omni-Lie algebroids, Nambu-Jacobi manifolds , multisymplectic geometry, Nambu-Poisson manifold will be studied.Finally,we will provide an introduction to the theory of graded analogues integrable submanifolds of differential geometry. Therefore, The smooth implementation of the project will improve the higher-order structures' theory, and will have a positive impact on other research fields.
近几年,高阶结构是泊松几何和数学物理方向研究的热点之一。我们初步研究了高阶齐次Courant 结构的代数几何结构,并定义了高阶- Courant 括号下的(p,k)-Dirac 结构,其保证了Nambu-括号和多辛结构的完美统一,但是仍有许多问题有待深入研究。在前期工作的基础上,本项目将继续研究高阶Courant 代数胚的第一Pontryagin 类、形变同调理论和高阶范畴的关系,从而解决物理中相应高阶齐次和非齐次结构(如:M 理论)中的可积性问题;研究高阶结构在数学物理中的应用及高阶omni-Lie代数胚与Nambu-Jacobi 流形、Nambu-Poisson流形和多辛几何等高阶结构的关系;最后,将研究分次微分几何的可积子流形。本项目的顺利实施能够完善高阶结构理论,并对其它研究领域产生积极影响。
本课题主要研究对象为Courant代数胚的高阶结构,我们研究它们的几何代数结构,包括Courant代数胚、高阶omni-李代数胚、Hom-Lie-Rinehart代数等。主要研究内容和结果分为以下两个方面。.1.给出高阶omni-李代数胚的两个适当的定义,研究了它们的Dirac结构。第一个定义在上研究n-omni李代数胚,它是高阶Courant代数胚的线性化,它的Dirac结构包含了可缩的高阶几何结构。第二个定义在上研究omni-n李代数胚,它涵盖了Nambu-Jacobi结构,E上的n-李代数胚,omni-n李代数等。作为例子,讨论了平凡线丛上的高阶omni-李代数胚,说明它的Dirac结构和A.Wade在2000年定义的Conformal Dirac结构之间联系。.2.作为Hom-Lie algebroids的代数化,定义了Hom-Lie-Rinehart代数的作用、Hom -Lie-Rinehart代数的交叉模和cat1-Hom-Lie-Rinehart代数的概念。证明了Hom-Lie-Rinehart代数的交叉模与cat1-Hom-Lie-Rinehart代数存在着一一对应。.这些研究成果具有一定的广泛性和创新性,为进一步深入探讨高阶结构奠定了基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
高阶Courant结构
CLWX 2-代数胚、左对称代数胚与Poisson几何
代数量子群胚的分析结构与相关量子不变量的研究
Hopf代数胚上的扩张的表示理论