二阶奇异微分方程周期解与无界解的存在性研究

基本信息
批准号:11861040
项目类别:地区科学基金项目
资助金额:30.00
负责人:李进
学科分类:
依托单位:九江学院
批准年份:2018
结题年份:2022
起止时间:2019-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:张小芝,沈霞,刘小妹,石富华
关键词:
存在性无界解周期解
结项摘要

Singular differential equation is a kind of equations with strong practical background. Many of its models originate from some practical problems, such as the Brillouin electron beam focusing equation and the Emarkov-Pinney equation. This project focuses on the theories of singular differential Equations and their applications: by using phase plane analysis and topological degree, we study the existence and multiplicity of periodic solutions for the various resonance cases; we study the relation between periodic potential and resonance and non resonance, study the existence and multiplicity of periodic solutions of singular differential equations with periodic potential by using phase plane analysis and topological degree or using Variational method, and study the applications to the Brillouin electron beam focusing equation and the Emarkov-Pinney equation; we study the existence of unbounded solutions of singular differential equations by using phase plane analysis, and study the co existence of unbounded solutions and periodic solutions. These questions are very important theoretical and practical issues in the field of singular differential equations, so the research in this project has great theoretical and practical value, and can further improve the relevant theory of singular differential equation.

奇异微分方程是一类具有很强实际背景的方程,它的很多模型来源于一些实际问题,比如电子聚焦束方程问题和Emarkov-Pinney方程。本项目着重研究奇异微分方程中的下列理论与应用问题:利用相平面分析和拓扑度或者扭转定理研究各种共振情形下周期解的存在性和多解性;研究周期位势与共振和非共振的本质关系,利用相平面分析和拓扑度或者利用变分法研究带周期位势的奇异微分方程周期解的存在性与多解性,并利用所得到的结果研究电子聚焦束方程和Ermakov-Pinney方程;利用相平面分析研究各种共振形式下奇异微分方程无界解的存在性,并研究无界解和周期解的共存性。这些问题都是奇异微分方程领域非常重要的理论和应用问题,故本课题的研究具有非常好的理论价值和实际应用价值,并可进一步完善奇异微分方程的相关理论体系。

项目摘要

奇异微分方程是一类源于很强实际背景的方程,研究它的诸多问题具有很好的理论和实际意义。本项目研究二阶奇异微分方程的周期解和无界解问题,探讨电子聚焦束方程问题和Emarkov-Pinney方程周期解的存在性和多解性等问题。我们找到一种新的寻找周期解的方法,并经过理论研究和计算机模拟计算发现,致使周期解的存在的参数的范围严重依赖奇异项的次数,并随次数的变化而变化。这为研究一般形式的带周期位势的奇异微分方程提供了一种方法参考,同时在实际应用中为研究电子聚焦束方程和Emarkov-Pinney方程等提供了参考方法。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
3

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响

DOI:10.7606/j.issn.1000-7601.2022.03.25
发表时间:2022
4

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022
5

卫生系统韧性研究概况及其展望

卫生系统韧性研究概况及其展望

DOI:10.16506/j.1009-6639.2018.11.016
发表时间:2018

李进的其他基金

批准号:31160094
批准年份:2011
资助金额:48.00
项目类别:地区科学基金项目
批准号:71302035
批准年份:2013
资助金额:21.00
项目类别:青年科学基金项目
批准号:81900359
批准年份:2019
资助金额:20.00
项目类别:青年科学基金项目
批准号:81070985
批准年份:2010
资助金额:32.00
项目类别:面上项目
批准号:11873075
批准年份:2018
资助金额:63.00
项目类别:面上项目
批准号:30270218
批准年份:2002
资助金额:23.00
项目类别:面上项目
批准号:51807136
批准年份:2018
资助金额:24.00
项目类别:青年科学基金项目
批准号:81373136
批准年份:2013
资助金额:80.00
项目类别:面上项目
批准号:30771969
批准年份:2007
资助金额:27.00
项目类别:面上项目
批准号:61505093
批准年份:2015
资助金额:20.00
项目类别:青年科学基金项目
批准号:81571131
批准年份:2015
资助金额:85.00
项目类别:面上项目
批准号:61100224
批准年份:2011
资助金额:23.00
项目类别:青年科学基金项目
批准号:81772561
批准年份:2017
资助金额:55.00
项目类别:面上项目
批准号:30960047
批准年份:2009
资助金额:26.00
项目类别:地区科学基金项目
批准号:39100121
批准年份:1991
资助金额:3.50
项目类别:青年科学基金项目
批准号:41204017
批准年份:2012
资助金额:26.00
项目类别:青年科学基金项目
批准号:51278035
批准年份:2012
资助金额:80.00
项目类别:面上项目
批准号:38870467
批准年份:1988
资助金额:3.00
项目类别:面上项目
批准号:61366005
批准年份:2013
资助金额:44.00
项目类别:地区科学基金项目
批准号:61801363
批准年份:2018
资助金额:25.00
项目类别:青年科学基金项目
批准号:61472091
批准年份:2014
资助金额:80.00
项目类别:面上项目
批准号:30770638
批准年份:2007
资助金额:30.00
项目类别:面上项目
批准号:30873019
批准年份:2008
资助金额:30.00
项目类别:面上项目

相似国自然基金

1

二阶非线性微分方程的周期解与无界解

批准号:11501381
批准年份:2015
负责人:马田田
学科分类:A0301
资助金额:18.00
项目类别:青年科学基金项目
2

拓扑方法与奇异微分方程周期解、拟周期解研究

批准号:11461016
批准年份:2014
负责人:李胜军
学科分类:A0301
资助金额:36.00
项目类别:地区科学基金项目
3

奇异微分系统周期解的存在性与稳定性

批准号:11701375
批准年份:2017
负责人:廖芳芳
学科分类:A0301
资助金额:23.00
项目类别:青年科学基金项目
4

脉冲随机泛函微分方程周期解的存在性

批准号:11326118
批准年份:2013
负责人:黎定仕
学科分类:A0302
资助金额:3.00
项目类别:数学天元基金项目