Self-electricity generation through harvesting tiny energy from environment can supply power for devices requiring small amount of power such as embedded sensors, environment sensors etc., which is significant for optimized energy consumption and energy saving purposes. Until now, there still remains challenges of fabricating mini-generators with features of having small resistance, producing large current, being durable with long lifetime and environmentally-friendly. Self-electricity generation based on non-contacting mode through the locomotion of micro-motors is promising to address the problem. Herein this project proposes to design and fabricate functionally cooperated mini-generators, which harvest tiny energy available in environment and convert to mechanical energy for motions; by further applying the electromagnetic induction law, we can transform the mechanical energy into electric energy, which supplies power for electronics. Energy such as solar power, inner energy of bubbles in fermentation industry, pressure difference between systolic and diastolic pressures can be used as energy sources for the motion of smart devices. We will study the dynamic correlations between the fluctuation of environmental energy and the kinetic energy demand of smart devices, thus guiding the optimized design of the smart devices for efficient energy harvest and transformation. Finally, by introducing capacitors or chargeable batteries to store the generated electricity, we anticipate that the developed self-electricity generation methods and mini-generators can provide sustainable power for cardiac pacers, wearable electronic devices, sensors and so on.
将环境中已有的微弱能量转化为电能的自发电技术,能够为植入式传感器、环境检测传感器等需电量较小的装置持续供电,对于能量的合理利用和节能环保具有重要的研究意义。目前,如何制备电阻小、电流大、寿命长、绿色环保的迷你发电机是自发电研究领域的一大挑战。基于微马达可控运动的非接触式自发电方法,有望解决这一难题,因此,本项目提出设计制备功能协同的微发电机,将环境中的微弱能量转化为微马达运动的机械能,进而应用电磁感应定律将机械能转化为电能,从而为电子器件持续供电。我们将利用环境已有能量(如太阳能、发酵工业产气的气体内能、生物体血压压差等)作为智能器件运动的能量来源,研究环境能量波动与器件动能需求之间的动态关系,优化器件设计,以实现能量的有效富集和高效转化。最终,通过引入电容器或者充电电池实现电能的存储、输出,期望为心脏起搏器电池,可穿戴电子装置,传感器等电子器件持续性供电。
受生物分子马达启发,科学家们制备了从纳米尺度到宏观尺度的人造马达,这些马达能够将各种形式的能量转换为自身的机械运动并完成货物运输、药物递送、环境修复、自组装等复杂任务。特别地,将人造马达运动的机械能转换为电能的研究受到了越来越多的关注。然而,目前报道的基于马达运动的微发电机存在耐久性较差、输出功率及能量转换效率较低等问题,阻碍了迷你发电机的实际应用。本项目提出功能协同的设计制备功能协同的微发电机,着眼于对微小环境能量的收集,将其转化为微马达运动的机械能,进而应用电磁感应定律将机械能转化为电能,从而为电子器件持续供电。我们将设计并制备了血压响应的垂直运动器件,实现了动脉压差到机械能再到电能的转换,为植入式医疗器械的持续性供电提供了新思路;同时提出了将迷你发电机与暗发酵制氢工艺相结合的策略,充分利用发酵生产线中的废弃能量作为输入能量,不消耗有用能源的情况下大幅提高能量转换效率,同时将产生的电能应用于发酵工艺中的气体流量监测;进一步通过在饮水鸟头部修饰超亲水表面提高表面液滴的蒸发速率,然后将饮水鸟的循环往复运动和法拉第电磁感应定律以及摩擦发电效应相结合,提高输出功率并将实现从动能到电能的转化。本项目为捕获环境中未被利用的微小能量的捕获富集及向电能的转化提供了有效策略,通过功能协同智能器件的设计和电磁感应定律的有机结合,将环境中的微弱能量转化为电能,有望为植入式电子器件,环境传感器等持续性供电。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
物联网中区块链技术的应用与挑战
响应面法优化藤茶总黄酮的提取工艺
低频振动体系中环境能量捕获的关键问题研究
基于成骨微环境响应的种子细胞捕获机制的建立
表面印迹磁性纳米微球结合液相微萃取捕获水环境中的手性药物
射频能量捕获网络信息与能量集成传输理论与方法