It has been proved that energy harvesting from ambient vibration has very important significance not only on the promoting of the new generation network - "internet of things", but also on the development of the energy saving and emission reduction strategy. In this project, we'll study the key role of nonlinear effect, composite vibration structure, voltage synchronous control collection, storage and output circuit, MEMS processing technology, etc. in energy harvesting from low-frequency vibration system. We will built the mathematical and physical model of low-frequency vibration system, and study their nonlinear coupling mechanism. The PVDF cascading piezoelectric-electromagnetic composite vibrators will be designed and optimized, also, the influence of piezoelectric material selection, and system structure change on the system response will be analyzed. At the same time, nonlinear voltage synchronized output circuit and supercapacitors will be design to improve the weak energy storage and output stability. During the research, the multi-source vibration system and the experiment test platform will be set up to study the relations between power supply and nonlinear effect from vibration incentive system, vibration picking structure and circuitry. And on this basis, the miniaturization manufacturing of the nonlinear piezoelectric- electromagnetic vibration energy harvestor by MEMS processing technology will be studied. In conclusion, this project is expected to provide a solid theoretical foundation and strong technical support for designing and processing the high-efficiency vibration energy harvestor.
基于环境振动的能量捕获研究是推动新一代物联网技术发展和实施节能减排战略的重要内容。本项目拟从低频振动体系出发,着重探索非线性效应、复合式拾振结构、电压同步控制采能、存储及输出电路,MEMS加工工艺等几个方面在能量捕获研究中的关键作用。建立低频振动体系的数学模型,研究低频振动体系中多振动源的非线性耦合机制;设计并优化级联式PVDF改性压电-电磁复合非线性拾振结构,分析压电材料选择及系统结构变化对系统响应特性的影响;优化并完善非线性电压同步控制电路的结构设计、引进超级电容,解决微弱能量存储及稳定输出问题;搭建多源振动激励系统和实验测试平台,研究多源振动、拾振结构、电路系统中的非线性效应与能量输出特性的作用关系;并在此基础上利用MEMS加工工艺,研究级联式压电-电磁复合非线性振动能量收集器的微型化制造问题,为设计、加工高效的振动能量捕获装置奠定理论和实验基础。
基于环境振动的能量捕获研究是推动新一代物联网技术发展和实施节能减排战略的重要内容。本项目从低频振动体系出发,着重探索了非线性效应、压电拾振结构、电压同步控制采能、存储及输出电路,MEMS加工工艺等几个方面在能量捕获研究中的关键作用。建立了低频振动体系的等效数学模型,利用有限元理论设计并优化基于柔性主梁的线性多自由度能量采集器,叉指式低频、宽频能量采集器等拾振结构,确定了结构的尺寸大小,搭建实物样机并初步进行了MEMS工艺设计;优化并完善了多路并行可调谐能量采集电路的结构设计,初步探讨了超级电容结构、MEMS开关电路等在微弱能量存储及稳定输出问题中应用的可能性;搭建了多源振动激励系统和实验测试平台,验证了振动能量采集器为二极管、温度传感器等小型电子元件功能的可行性,为环境能量采集器件的实用化提供了一定的理论和技术支持。项目共发表论文19篇,其中SCI收录论文12篇;申请发明专利6项,授权2项;合作译著1部;协助指导博士研究1名,培养硕士研究生2名。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
从宽带低频振动环境中回收能量的非线性压电结构及后续电路研究
局域共振型压电超材料增强宽带低频环境振动能量俘获机理与方法
基于列车运行的轨道振动能量捕获和回收方法研究
高效磁电弹性复合振动能量收集的若干关键问题研究