Aiming at the needs of high-performance continuous lubricating materials in wide temperature range, preparation, composition, structure and continuous lubricating behavior in multi-cycle wide temperature range and adaptive friction-induced mechanism of MexNy/Ag nano-multilayer films (MexNy: Combined nitride of Nb, Ta, V, Mo elements) were studied, which was designed based on the modulation of micro/nano structures and continuous lubrication across temperature range. MexNy/Ag nano-multilayer films were preparaed by physical vapor deposition technology (PVD), and the effect of synergistic effect of multi-nitrides, content and distribution of lubricant and nano multilayer structure on the microstructure, structure, mechanical properties and tribological behavior in wide temperature range of the films were studied. After wear testing, the adaptive antifriction mechanism of MexNy/Ag films were analysed, the effect of temperature and multi-cycle wide temperature range on the composition, microstructure, and tribochemical effects of lubricating film and transfering film were explored. The friction-induced evolution behavior of lubricants with temperature and adaptive antifriction mechanism was also revealed, which were all based on the comprehensive analysis results of worn surface. Implementation of the project will obtain the key preparation technology of lubricating materials with excellent tribological properties in wide temperature ranges and provide theoretical basis and technical support to research and develop new type tribological materials with excellent properties.
针对航空航天、能源等行业对高性能多循环宽温域连续润滑材料的需求,基于多组元氮化物(MexNy,Me: Ta、Nb、V、Mo)的微纳结构调控及跨温域协同润滑的耦合设计思路,开展MexNy/Ag纳米多层膜的制备、组织结构、多循环宽温域连续润滑行为及自适应减摩机理研究。利用PVD技术构筑多组元MexNy/Ag纳米多层膜,考察基体相/润滑相组配、润滑剂含量与分布形态及纳米多层结构等对MexNy/Ag薄膜组织结构、力学性能和多循环宽温域连续润滑行为的影响;综合多种手段研究多循环宽温域工况对MexNy/Ag薄膜磨损表面润滑膜的化学组成及微观结构影响,揭示磨损表界面摩擦诱导润滑组元温度演变行为及自适应减摩机理,阐明MexNy/Ag薄膜的微纳结构调控与跨温域协同润滑作用机制。该项目不仅为航空航天等行业急需高性能多循环宽温域连续润滑材料研制提供理论依据和技术支撑,还可推动苛刻工况摩擦学的进步。
航空航天、能源等高技术产业普遍存在高温、宽温域(如20℃~1000℃)、复杂介质等苛刻工况,多循环宽温域工况(20℃~1000℃多次循环)运动部件的润滑与耐磨问题成为影响整个系统可靠性和寿命的关键。针对航空航天、能源等行业对高性能多循环宽温域连续润滑材料的需求,本项目基于强韧与润滑一体化材料的设计、制备及强耦合交互损伤特性,开展了金属基复合材料的设计、制备、组织结构分析、多循环宽温域连续润滑行为等服役行为研究,考察基体相/润滑相组配、润滑剂含量与分布形态及结构调控等对复合材料结构、力学性能和服役行为的影响,揭示磨损表界面的摩擦诱导润滑组元温度演变行为及自适应减摩机理,阐明复合材料的微纳结构调控机制与跨温域协同润滑作用。该项目不仅为航空航天等行业急需高性能多循环宽温域连续润滑材料研制提供理论依据和技术支撑,还推动了苛刻工况摩擦学的进步。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
钢筋混凝土带翼缘剪力墙破坏机理研究
基于二维材料的自旋-轨道矩研究进展
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
宽温域自润滑覆层的连续自润滑行为机理研究
冷喷涂纳米自润滑耐磨涂层的设计及其宽温域多循环自适应机制研究
氧化物基宽温域自润滑涂层设计、调控及多循环自适应机制
基于宽温域疏水微纳结构自适应构建的纳米气泡润滑减阻调控机理研究