A novel therapeutic strategy of cerebral ischemia is to maintain and recover the integral functional steady state in neurovascular unit (NVU). According to our previous work, NO-donor treatment at the early stage of cerebral ischemic/reperfusion significantly dilated vascular, inhibited platelet aggregation, increased cerebral blood flow, and protected neurons. However, the specific role and regulatory mechanism of NO in NVU remain unclear. In addition, we recently found that H2S exhibited protection on cerebral ischemic injury by inhibiting NOX2, the key synthase in the pathway of O2o- production. Based on these findings, we propose hypothesis that the combination of H2S and NO will provide profound protection against cerebral ischemia since 1) H2S blocks the release of O2o- and substantial production of ONOO- through inhibiting NOX2, and 2) supplement of NO could redeem the shortness of NO due to the low productive efficiency of eNOS. By employing RNA interfering, laser confocal live cell imaging and autoradiography, we will particularly focus on the integral microenvironment in NVU to investigate the regulatory role of H2S and NO in cerebral ischemia at the integral, cellular, molecular and genetic levels. We are convinced that this study will provide significant rational for the application of signaling gas molecule in the prevention and treatment of cerebral ischemia.
恢复和维持神经血管单元(NVU)功能性整体的稳态,已成为抗缺血性脑卒中的新策略。本课题组前期研究证实,在脑缺血再灌注损伤早期,给予NO供体型药物可发挥舒张血管、抑制血小板聚集、增加脑血流量、保护神经元的作用,但NO在NVU中的作用及调控机制尚不明了。我们新近发现,硫化氢(H2S)可通过抑制O2o-生成的关键途径-NOX2,减轻缺血性脑损伤。基于上述研究, 我们提出假说:H2S通过抑制NOX2,阻断O2o-及后续ONOO-的生成,可降低其毒性;同时适量补充外源性NO,解决eNOS活性降低导致NO水平不足的问题,能协同改善缺血性脑损伤。为验证该假说,本项目拟采用RNA干扰、激光共聚焦、放射自显影等技术,在整体、细胞、分子、基因等不同层面深入研究,从NVU整体微环境的视角阐明H2S和NO对脑卒中的调控作用及其机制这一科学问题,揭示气体信号分子在缺血性脑损伤进程中的双重作用及其对脑卒中的防治价值。
脑卒中是由于脑部供血受阻而迅速发展的脑功能损伤,已成为全球第二大死因。本项目采用局灶性脑缺血动物模型、神经血管单元细胞混合培养的氧糖剥夺等模型,运用western、RT-PCR、RNA干扰、免疫组化、激光共聚焦成像等技术,研究了气体信号分子H2S 和 NO对缺血性脑卒中的调控作用及其机制。本项目组设计、合成了一系列NO单供体型丁基苯酞(NBP)衍生物(NO-NBP)、H2S单供体型NBP衍生物(H2S-NBP)及NO/H2S双供体型NBP衍生物(NO/H2S-NBP),从中筛选出对缺血性脑卒中保护作用较强的化合物,进一步深入研究并探讨其作用机制。.本项目组在NBP杂交NO/H2S供体的开环衍生物中筛选出活性最强的化合物NOSH-NBP (8d)作为主要研究对象,其可较为稳健的释放NO和H2S,有利于脑微环境的恢复。初期研究表明,经口给予NOSH-NBP能够明显改善大鼠的神经行为功能,降低脑梗死体积及含水量,提高脑内抗氧化剂SOD、GSH、GSH-Px的含量,降低MDA的水平,对脑缺血再灌注相关损伤的保护作用优于其母体药物NBP。然后我们通过建立小鼠MCAO/R脑缺血再灌注损伤模型,在整体动物水平上分别评估了NOSH-NBP抗脑缺血的预防作用和治疗作用;并在此基础上以小胶质细胞的极化为切入口,建立神经元和胶质细胞共培养模型,在细胞水平上阐明NOSH-NBP可通过调节TLR4/MyD88/NF-κB信号通路和NLRP3炎症小体抑制M1型小胶质细胞的极化,通过调节PPARγ核转录促进M2型小胶质细胞的极化,从而发挥抗脑缺血作用。.同时本项目组也对NO和H2S的单供体化合物NO-NBP ((S)ZJM-289)和H2S-NBP (8e) 分别进行了脑神经保护效应及相关机制的探讨。一方面验证了NO对缺血性脑卒中的保护作用,阐明NO-NBP主要通过eNOS-NO-cGMP、NO-ERK-Nrf2通路发挥脑神经元保护效应;另一方面也证实了H2S对缺血性脑卒中的保护作用,揭示H2S可能通过影响PI3Kγ调节NOX2功能性亚基p47phox,最终调控NOX2的激活。还系统研究了NOX4在脑缺血再灌注损伤中的重要作用及激活方式的调控。.上述研究成果已发表论文10篇(均已标注),其中SCI论文9篇,累计影响因子33.8。项目负责人为通讯作者的8篇,共一作的1篇。培养博士3名,硕士4名。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver
缺血性脑卒中神经血管单元损伤与重塑的多模态影像学研究
ATP敏感性钾通道开放剂对缺血性脑卒中后神经血管单元功能的调节及其作用机制
基于网络药理学和神经血管单元的三七治疗缺血性脑卒中整合调节机制研究
油酰乙醇胺对缺血性脑卒中神经血管稳态重构的作用及机制研究