This project firstly breaks through the key technology of preparation for the continuous integration of carbon nanotubes/carbon fiber (CNTs/CF) reinforced body, by using the independent research and development of carbon fiber and its precursors test facilities. From the preparation of the precursors based on carbon fiber, by means of preoxidation and carbonization, electrochemical modification and catalyst loading, the optimization process was designed for carbon nanotubes growing on the catalytic surface of carbon fiber, the well-defined continuous carbon fiber reinforced body was achieved in high performance CNTs/CF production line; the optimization for continuous growth of carbon nanotubes multi-scale structure, its stability and controllable mechanism could be breaked from the applied basic theory, the process parameters in different stages influencing the continuous precipitation and growth of carbon nanotubes should be clear during the preparation for CNTs/CF reinforced body online, the online-controlled growth of carbon nanotubes in the surface of carbon fiber was achieved, and the dynamics model for the growth of carbon nanotubes online should be established, the online continuous growth of carbon nanotubes on the carbon fiber surface and the bonding mechanism would be revealed, the patent technology of independent intellectual property rights of multi-scale continuous reinforced CNTs/CF body online could be acquired, the theoretical basis for the preparation and application for high performance CNTs/CF reinforced should be set up.
本项目利用自主研发的现有碳纤维及其原丝试验线,从制备碳纤维原丝开始,通过预氧化和碳化、电化学改性、加载催化剂,优化碳纳米管在碳纤维表面的催化生长工艺,首次突破碳纳米管/碳纤维增强体连续一体化制备关键技术,在碳纤维生产线上实现高性能碳纳米管/碳纤维增强体的连续化制备;从应用基础理论上突破连续碳纤维表面催化生长碳纳米管多尺度结构优化及其稳定性可控机理,明确碳纳米管/碳纤维增强体在线连续化制备过程中各阶段工艺参数对碳纳米管析出和生长的影响规律,实现碳纤维表面碳纳米管的在线可控生长,并建立碳纳米管在线生长的动力学模型,揭示在线连续碳纤维表面生长碳纳米管及其界面结合机制,获得具有自主知识产权的碳纳米管/碳纤维多尺度增强体连续化在线制备专利技术,为高性能碳纳米管/碳纤维增强体制备及应用奠定理论基础。
本项目基于国防军工和航空航天等领域对高性能碳纤维及其复合材料的迫切需求,为解决碳纤维复合材料界面强度低,抗冲击性能差等瓶颈问题,提出开展连续碳纤维表面催化生长碳纳米管(CNTs)在线可控机理研究,在连续碳纤维表面接枝CNTs,制备CNTs/碳纤维(CNTs/CF)增强体,充分发挥碳纤维和CNTs各自的性能优势。一方面增大基体与增强体界面接触面积,使界面机械啮合作用加强,另一方面实现了CNTs均匀分散及定向排布,进一步提高了复合材料的强度和韧性。. 本项目主要研究内容包括碳纤维表面电化学改性研究、催化剂加载及其催化机理研究、CNTs在线生长工艺优化、连续碳纤维表面CNTs多尺度结构优化及其在线可控机理研究、连续碳纤维表面CNTs生长机理及CNTs/CF界面结构研究。. 本项目利用自主研发的碳纤维及其原丝试验线,从制备碳纤维原丝开始,通过预氧化和碳化、电化学改性、加载催化剂,优化CNTs在碳纤维表面的催化生长工艺,首次突破了CNTs/CF增强体连续一体化制备关键技术,实现了高性能CNTs/CF增强体的连续化制备;明确了CNTs/CF增强体在线连续化制备过程中各阶段工艺参数对CNTs析出和生长的影响规律,实现了连续碳纤维表面催化生长CNTs多尺度结构优化及其稳定性可控生长,并提出了CNTs在线生长的动力学模型,创立了CNTs/CF增强体连续化在线制备工艺体系,突破了该技术的应用基础理论,揭示了在线连续碳纤维表面生长CNTs及其界面结合机制,获得了具有自主知识产权的CNTs/CF多尺度增强体连续化在线制备专利技术。. CNTs/CF是很有生命力的新型增强体,其综合性能明显优于碳纤维,利用该增强体制备的复合材料层间剪切强度大于110MPa。该项目为高性能CNTs/CF增强体制备及应用奠定了理论基础,这必将有力的推动我国碳纤维及其复合材料产业的快速发展,对最大限度地发挥碳纤维在航空航天和国防军工等领域的不可替代的作用具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
低轨卫星通信信道分配策略
面向云工作流安全的任务调度方法
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
当归补血汤促进异体移植的肌卫星细胞存活
超高密度超长定向单壁碳纳米管阵列在表面的可控生长及其生长机理研究
碳纳米管纤维的连续制备和强韧化机理研究
纳米加工辅助表面上单壁碳纳米管的可控生长
单壁碳纳米管连续纤维合成研究