This project intends to research the force transfer failure mechanism and control method for large power magnetorheological fluids transmission system. The two-phase Lattice Boltzmann model for MRF is presented and a simulation algorithm for chain-formation process based on Lattice Boltzmann with double meshes is designed, and the chain-formation mechanism of large volume fraction magnetorheological fluids with the magnetic force is put forward. The influence rules which the temperature and deformation act on the system are presented, and the preparation process of MRF for large power magnetorheological fluids transmission system is improved through five aspects such as coating material, particle size, volume fraction, proportion of two different size particles and carrier liquid. The force model for attached particle chain under extrusion is proposed and the compressive modulus of particles microstructure is analyzed, and the mechanical characteristics of MRF under extrusion mode is obtained quantitatively. A nonlinear coupling model is set up based on dipole model, system identification approach, zero phase error tracking and adaptive control theory, and the control strategy is designed through integration of the offset of inverse model and adaptive control theory. This project has important theoretical significance for the research on force transfer failure mechanism of large power magnetorheological fluids transmission system, and provides new theory and approach for optimal design of large power magnetorheological fluids transmission.
本项目以大功率磁流变液传动系统为对象,研究其动力传递失效机理及其控制方法。建立磁流变液的两相格子Boltzmann模型,设计基于双重网格Lattice Boltzmann方法的链化过程模拟算法,揭示大体积分数磁流变液的磁化机理;探求温度变化与界面变形对大功率磁流变液传动系统动力传递失效的影响规律,并从磁性颗粒包覆剂种类、粒径大小、体积分数、粒径混合比例、载液等方面优化磁流变液制备工艺;建立挤压作用下附着颗粒链的力学模型,对颗粒群微观结构进行压缩弹性模量分析,定量获得磁流变液传动系统的挤压力学特性;综合运用偶极子模型、系统辨识方法、零相差跟踪、自适应控制等理论,建立大功率磁流变液传动系统的非线性耦合模型,设计基于逆模型补偿控制和自适应控制相结合的控制策略。本项目的研究对于揭示大功率磁流变液传动系统动力传递失效机理具有重要的理论意义,并为大功率磁流变液传动装置的优化设计提供新的理论和方法。
本项目以大功率磁流变液传动系统为对象,研究其动力传递失效机理及其控制方法。通过实验分析了磁流变液传动的失效形式,并从磁性颗粒、载液和添加剂三个方面研究了磁流变液的磨损机理;建立了基于质点-弹簧的颗粒链模型,对磁性颗粒群链化过程进行了模拟。通过工业CT扫描,微观情况下观察磁流变液的成链过程;通过实验方法探究磁流变液的制备工艺并对制备工艺进行了优化,确定了表面活性剂的种类与配比,实验发现磁性颗粒的体积分数为20%的磁流变液,添加表面活性剂十二烷基苯磺酸钠的质量分数为2%,油酸的质量分数为3%时,制得的磁流变液的综合性能较好;研究了磁流变液颗粒在外加磁场中的受力情况,基于磁偶极子理论对磁流变液的挤压力学特性做了详细的理论分析,搭建了挤压力学特性试验系统,开展了轴向和径向挤压实验,实验结果表明:挤压可以增大磁流变制动器的制动转矩,轴向压力为1.5MPa时的最大制动转矩为2540N·m,增大了90%,径向压力为2MPa时的最大制动转矩为1800N·m,增大了40%;设计了基于改进果蝇算法的压力控制技术和基于自适应模糊PID控制的速度控制技术,并开展了相关的实验。本项目的研究对于揭示大功率磁流变液传动系统动力传递失效机理具有重要 的理论意义,并为大功率磁流变液传动装置的优化设计提供新的理论和方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于FTA-BN模型的页岩气井口装置失效概率分析
旋转界面间磁流变液动力传递机理研究
耦合工作模式下磁流变液动力传递机理及调控特性研究
大功率磁流变液传动散热机理及高速动力稳定性研究
磁流变液传动系统动力学演变过程的多尺度模拟