There is obvious projectile erosion for the high velocity projectile penetrating into concrete, which will result in the blunting of the projectile nose shape, even the instability of the ballistic trajectory and reduce the projectile penetration ability. The coupling investigation of the erosion and motion of the high velocity projectile is closely related to the physical design and optimization of the projectile, which has become one of the issues that must be solved in the investigation on high velocity penetration field...This project aims to solve the erosion-motion interaction of the projectile during high velocity penetration into concrete.Through experimental testing and theory analysing, the penetration mechanism of projectile with erosion are explored, the physical and mechanics mechanism of the mass loss of high velocity penetration projectile are determined, a quantitative model and an evolution law of the projectile’s mass loss and erosion are established. The coupling numerical simulation method based on the Finite Element Method (FEM) and Meshless Method (i.e. Smoothed Particle Hydrodynamics (SPH)) will be established, where the local thin layer region of erosion and the main body of projectile are treated as two different scales. The multiscale simulation of the physical process of the erosion on the surface of high velocity penetration projectile can be carried out.The equations of motion of the high velocity penetration projectile with erosion can be established and the movement algorithm with force based on the differential area force law (DAFL) will also be developed to analyze the interaction between projectile motion and mass erosion. ..The research can expand the usable range of the projectile penetration analysis method and provide a theoretical guidance for both the performance analysis of high velocity penetration and the motion trajectory prediction of high velocity projectile.
高速弹体侵彻混凝土过程中弹体会发生明显侵蚀,导致弹头形状变钝,甚至弹道失稳,侵彻能力会大幅降低。弹体质量侵蚀及其对运动轨迹影响与高速侵彻弹体结构设计和优化密切相关,已经成为混凝土高速侵彻研究必须解决的问题之一。..研究高速侵彻混凝土过程中弹体侵蚀与弹体运动轨迹的耦合作用,是本项目要解决的关键问题。项目通过实验测试和理论分析确定高速侵彻弹体在混凝土靶体中质量损失与侵蚀的物理与力学机理,建立更为合理的弹体质量损失与侵蚀的定量模型;开发有限元和无网格SPH耦合数值模拟方法,将侵蚀局部薄层区域和弹体主体看作两个尺度,实现高速弹体表面侵蚀物理过程的多尺度数值模拟;建立高速侵蚀弹体运动方程,开发基于微元面力法的弹体载荷加载及运动轨迹预测算法,分析高速侵蚀弹体运动与侵蚀之间的相互作用,拓广弹体侵彻分析方法使用范围,为高速侵彻性能分析与轨迹预测提供理指导。
项目针对弹体高速侵彻混凝土过程中急需解决的科学问题,以高速侵彻弹体侵彻过程中弹体头部质量侵蚀、形状改变与弹体在混凝土靶中运动轨迹耦合作用为主要研究内容,采用实验测试、理论分析相结合的方法,重点开展了高速侵彻弹体侵蚀模型建立及侵彻空腔膨胀理论分析、高速侵彻侵蚀弹体的运动轨迹计算模型及运动耦合效应研究以及高速弹体侵彻钢筋混凝土侵彻模型及弹道预测研究,项目建立了基于微观分析的质量侵蚀模型、考虑剪胀效应的混凝土动态球形和柱形空腔膨胀理论,完成了动能弹非正侵彻混凝土弹道稳定性研究,开展了侵蚀弹体非正侵彻半无限靶的弹道预测和刚性/侵蚀弹体非正侵彻贯穿有限厚靶的弹道预测。并结合弹体侵彻(钢筋)混凝土靶开坑深度的讨论和钢筋混凝土靶的动态球形空腔膨胀理论分析完成了弹体侵彻/贯穿有限厚钢筋混凝土靶弹道预测。.项目取得高速非正侵彻混凝土过程中弹体侵蚀与运动耦合效应研究成果,可用于结构的撞击防护、弹体侵彻混凝土靶效应分析、高速深侵彻弹道轨迹预测和钢筋混凝土靶体破坏效应分析,可为高速侵彻弹体结构设计、侵彻能力分析及运动轨迹预测提供理论指导。研究成果在交通安全、核工业结构防护、国防侵彻弹体研究和能力预测等方面具有重要的研究应用价值和指导意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
低轨卫星通信信道分配策略
高速侵彻弹体的质量侵蚀研究
高速弹体非正侵彻结构响应模式与失效破坏机理研究
高速侵彻混凝土弹体弹道偏转的机理分析
弹体高速侵彻的侵蚀机理及数值模拟方法研究