According to flaws that are difficult to accurately identification during ultrasonic testing, signal analysis and intelligence classification methods are mainly studied in this paper, due to the transient virtue of ultrasonic pulse echo, wavelet transform is used in this paper to extract the feature information of flaw signals and to suppress the noise in the signals. To realize flaws classified intelligently and automatically, artificial neural network is used to distinguish different flaws automatically. Based on the achievement, wavelet packet and fit dynamic envelope method have given to extract the feature of the flaw in this paper. In order to apply practice, we build a virtual instrument to aid identifying flaw type. The research result could assist to analyze ultrasonic flaw detection, thus perfect existing ultrasonic flaw detector tool and offer strongly means for flaw determined the nature and identified, improve the efficiency of ultrasonic inspection enormously.
目前超声探伤的主要趋势是智能化和自动化。本项研究的主要目标是研究超声探伤中缺陷的定性分类的智能化方法。采用小波分析及模式识别方法,从常规超声检测(A型脉冲反射式┑娜毕莼夭ㄐ藕胖刑崛》从橙毕菪灾实奶卣髦担ν纪牙肴宋鞴垡蛩兀凸劭蒲У囟匀毕萁惺侗鸸槔唷N迪种悄芑瞧鞯氖涤没⒉坊於ɑ。锏阶远⒏咝У厥侗鸶骼嗳毕莺吞岣呒觳饪煽啃约疤缴诵实哪康摹?.
{{i.achievement_title}}
数据更新时间:2023-05-31
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
基于细粒度词表示的命名实体识别研究
基于全模式全聚焦方法的裂纹超声成像定量检测
基于协同表示的图嵌入鉴别分析在人脸识别中的应用
响应面法优化藤茶总黄酮的提取工艺
基于图像理解的织物缺陷智能检测识别方法研究
层析成象和全波震相分析在金属材料探伤中的应用
基于相位突变的异种材料扩散焊缺陷超声检测和识别方法研究
金属材料内部亚毫米多缺陷定位与定量的激光超声横波阴影交叉检测方法研究