Development of high efficiency and environment friendly photovoltaic materials and devices are the major strategic need to solve national energy problems. Organic solar cells have become one of the most potential photovoltaic devices. The primary and key issues for obtaining high efficiency organic solar cells are to improve the solar light input-coupling into organic active layer and enhance light absorption. The light absorption and charge carrier transport of active layer depends not only on the organic materials, but also the molecular alignment on the substrates, which will strongly determine the performance of organic solar cells. The research focal points of this project are listed as the following: i) Preparing different micro-nano structure controllable thin films modified substrates by glancing angle deposition to improve the solar light input-coupling into the organic active layer. Investigate the effect of micro-nano structure on different wavelength light input-coupling into the organic active layers. ii) Optimizing the interpenetrating network of donor and acceptor blend films by using electric/light field-assisted thin film growth technique to enhance light absorption, exciton dissociation ration and charge carriers transport and collection ability. iii) Preparation tandem configuration organic solar cells and modification substrates for irradiation light wavelength conversion to expand the solar spectrum response range of cells. iv)Fabrication of the inverted configuration organic solar cells with ultrathin buffer layer to improve the stability of organic solar cells. v)The effect of micro/nano structure of films, surface and interface energy alignment on the performance of organic solar cells were investigated by using transient photocurrent, photoelectron spectroscopy, alternating current impedance spectroscopy, X ray diffraction, microscopic analysis and other research techniques. The ultimate aim is to obtain the power conversion efficiency more than 8% inverted tandem configuration organic solar cells.
开发高效率、环境友好的光伏材料与器件是国家解决能源问题的重大战略需要,有机太阳能电池已成为最具发展潜能的光伏器件之一。如何增强有源层材料对太阳光的吸收是提高电池效率的首要问题。材料的光电特性不仅与材料本身有关,还取决于分子的排布方式。本项目重点研究:1)利用倾斜式生长制备微纳结构可控的薄膜修饰衬底,增强太阳光向有源层的输入耦合,探究微纳结构对太阳光输入耦合的影响;2)利用光/电场调控技术优化给受体空间互穿网络的纳米结构,提高光吸收、激子解离和载流子传输与收集能力;3)通过制备叠层结构有机太阳能电池、修饰衬底实现波长转换等手段,拓展器件对太阳光谱的响应范围;4)超薄层界面修饰制备反型结构器件,提高器件稳定性;5)利用瞬态光电流、光电子能谱、交流阻抗谱、X射线衍射、显微分析等手段,研究薄膜微纳结构、表面与界面能级结构对有机太阳能电池性能的影响,制备出效率大于8%的反型叠层结构的有机太阳能电池。
开发高效率、环境友好的光伏材料与器件是国家解决能源问题的重大战略需要,有机太阳能电池已成为最具发展潜能的光伏器件之一。如何增强有源层材料对太阳光的吸收是提高电池效率的首要问题。材料的光电特性不仅与材料本身有关,还取决于分子的排布方式。本项目的最终任务:制备出效率大于8%的反型叠层结构有机太阳能电池。现就项目执行情况,已取得的成果,重要结果‘关键数据及科学意义进行总结,如下:.1. 经过4年的努力,本课题组在有机光伏器件方面取得了较大的进展,已经发表论文的数据,器件的光电转换效率达到12.12%,正在投稿的数据:光电转换效率达到13.78%。.2. 在本项目的资助下,从发表SCI论文41篇,其中影响因子大于10的论文9篇,影响因子大于4的论文39篇,ESI高被引用论文3篇。.3. 在本项目的资助下, 开展了倍增型有机光电探测器的研究,在国际上首次报道了低暗电流、光谱响应范围可调的倍增型有机光电探测器,并得到了国际、国内同行的高度认可。.4. 在本项目的资助下,指导毕业博士研究生3人,硕士研究生11人,其中6人次获得研究生国家奖学金,1人的博士学位论文被评为“北京交通大学优秀博士学位论文”。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
山核桃赤霉素氧化酶基因CcGA3ox 的克隆和功能分析
混采地震数据高效高精度分离处理方法研究进展
聚酰胺酸盐薄膜的亚胺化历程研究
基于天然气发动机排气余热回收系统的非共沸混合工质性能分析
高效率两端子双节钙钛矿/有机叠层太阳能电池的制备与性能研究
高效率单结和叠层全塑料太阳能电池的研究
有机异质结内部连接层的工作机理及叠层有机发光器件研究
基于有机光伏型连接层的叠层有机电致发光器件