Recently, metal-air batteries have recently emerged as an attractive approaches to realize efficient energy storage benefited from its low cost, environment safety and high energy density. Among these nonprecious catalysts used as the cathode for metal-air battery, spinel-structured oxides, with high electronic conductivity and stability, have exhibited their superior performance in OER/ORR catalytic performance. However, their electrocatalytic performance is still far from the requirements for practical applications. Developing simple and economic alternative routes to design the non-precious metal catalysts with highly activity becomes more and more imperative. In this project, focused on improving both the OER and ORR catalytic activities for the spinel structure, we plan to adjust its electronic structure through the defect engineering and atomic-thickness strategy by analyzing the restrictive factors of both the OER/ORR catalytic processes. In order to promote its activity of active sites, the concentration of oxygen vacancies could rationally modulate its adsorption energy, increase its electric conductivity and the atomic-thickness strategy could increase the number of active sites, and thus improves the surface reactions. Then, the relationship between the catalytic activity and the structural features of the prepared catalytic materials will be established. The project will be explored catalytic mechanism of the spinel based electrocatalytic materials in metal-air batteries. And also, it will reveal how the oxygen vacancies affect the OER and ORR in metal-air batteries. The implementation of this project will supply theoretical and methodological guidance for design and fabrication of low cost, high catalytic efficiency, high stability electrocatalysts for the exploitation of metal-air batteries.
本课题针对目前金属空气电池中空气电极催化剂成本高、催化效率低及稳定性差等问题,提出构筑含有氧空位的尖晶石结构超薄纳米片电极,来同时提升材料的电催化产氧(OER)和氧还原(ORR)两个方面的催化性能。以尖晶石结构的超薄纳米片作为研究载体,通过氧空位的浓度调变影响材料的电子结构,优化其双功能电催化性能。系统研究不同氧空位浓度的尖晶石超薄纳米片的OER和ORR催化性能,建立电催化材料的电子结构与双功能电催化性能之间的“构-效”关系,并探索电催化材料对OER/ORR反应的催化机理,揭示氧空位浓度的调控对材料的双功能电催化性能的作用规律,为金属空气电池的电催化剂提供更多的候选材料
本课题针对目前电催化剂成本高,催化效率低、稳定性低等问题,提出构筑富含缺陷的尖晶石超薄纳米片作为多功能电催化剂,并探究电催化材料反应的催化机理这一选题。在三年的实验过程中,本课题将镍,钴基的尖晶石氧化物,氢氧化物的超薄纳米片作为研究载体,通过对其进行氧空位的引入,第三金属(钼,钒,铁)的掺杂,超薄纳米阵列结构等策略,来调节其电子结构。通过X射线衍射、扫描电镜、透射电镜以及原子力显微镜等方法对电催化材料的结构和组成进行了系统表征。再通过对电催化剂的电催化测试,筛选出高效、高稳定性的电催化材料,以得到具有优异OER,HER和ORR多功能催化性能的电催化材料,并应用于锌空气电池以及电催化分解水。深入系统研究这些调控策略对非贵金属氧化物、氢氧化物材料的多功能电催化催化性能的影响,为锌空气电池以及全分解水的电催化剂的选取提供更多的备选材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
空气电晕放电发展过程的特征发射光谱分析与放电识别
二维MXene材料———Ti_3C_2T_x在钠离子电池中的研究进展
三级硅基填料的构筑及其对牙科复合树脂性能的影响
上转换纳米材料在光动力疗法中的研究进展
超薄MOFs纳米片/石墨烯复合电催化剂的构筑及其性能研究
基于二维单层功能纳米片的取向性水凝胶的原位构筑及其性能研究
富含氧空位的Pt/Co3O4纳米片室温电催化甲烷选择性氧化制甲醇的研究
超薄多金属纳米片材料的构筑及其增强氧还原催化性能研究