Astaxanthin is one of the natural food ingredients with strong antioxidant activity. However, its application has been severely hindered by several disadvantages such as the instability, low solubility and poor oral absorption. This project focuses on the establishment of a highly efficient microencapsulation for astaxanthin delivery through the combination of a super-heated aqueous aqueous particle engineering process (SHAPE) coupled electrospray technique and polymeric composite micelles delivery system. The interaction mechanism between the characteristics of precursor emulsion from SHAPE and electrospray parameters will be clarified to solve the key problem when coupled with electrospray technology. The three-phase diagram and fluorescence probe method will be utilized to investigate the solubilization mechanism of the microencapsulation. Furthermore, intestinal circulation perfusion model and Caco-2 cell model will be employed to explore the oral absorption mechanism, thus shed light on the absorption, distribution, and excretion of the microencapsulated astaxanthin. Afterward, the effect of microencapsulation system on the in vivo metabolism of astaxanthin will be discussed. the safety of the microencapsulation system and its preliminary in vivo metabolism will be evaluated, along with the in vivo biological activities of astaxanthin in this formulation. This project aims to investigate the inner correlation between the formulation of the microencapsulation system and its mechanism of action in vivo so as to further promote the biological utilization of food-derived active ingredients through the improvement of stability, solubilization and oral absorption of astaxanthin achieved by the microencapsulation system. The project offers a new drug delivery system with advanced technology for the research and development of unstable and poorly-absorbed food-derived active ingredients.
虾青素是抗氧化活性最强的天然食源成分,但难溶解、不稳定、口服吸收差等因素制约其实际应用。本项目旨在将超热水性粉体工程学技术偶联的静电喷雾工艺与聚合物复合胶团高效传递载体相结合,构建虾青素的高效微囊化体系。通过阐明超热压前驱乳液性状对静电喷雾过程的影响因素,解决超热压偶联静电喷雾微囊化策略的关键问题。采用三相图法、荧光探针法等研究复合胶团的增溶机理;采用在体肠循环灌流模型和Caco-2细胞模型研究虾青素的口服吸收机制,阐明最佳吸收部位、转运作用及外排特征;系统评价虾青素高效微囊化的载体与代谢安全性、体内效果及生物活性。本项目旨在研究食源活性成分微囊化体系构建与体内作用机制的内在关联,解决微囊化技术提高活性成分生物利用的关键科学问题,实现虾青素稳定性、体外增溶和口服吸收的同步提高。本项研究为不稳定、难吸收的食源性活性成分的研发提供新思路、新技术、新载体。
虾青素是抗氧化活性最强的天然食源成分,但难溶解、不稳定、口服吸收差等因素制约其实际应用。本项目将超热水性粉体工程学技术偶联的静电喷雾工艺与聚合物复合胶团高效传递载体相结合,构建虾青素的高效微囊化体系。通过自组装超热水性粉体-静电喷雾联用设备,阐明了超热压前驱乳液性状的工艺因素,构建了虾青素PEG-g-CS静电喷雾纳米粒、虾青素PEG-g-CS纳米粒、虾青素PVP静电喷雾纳米粒、虾青素包合物纳米粒、虾青素单晶固体分散体等多种虾青素创新传递体系。开展了虾青素纳米体系体内外性质及其口服吸收机制的研究。本项目研究了食源活性成分微囊化体系构建与体内作用机制的内在关联,解决了微囊化技术提高活性成分生物利用的关键科学问题,实现了虾青素稳定性、体外增溶和口服吸收的同步提高。本项研究为不稳定、难吸收的食源性活性成分的研发提供了新思路、新技术、新载体。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
农超对接模式中利益分配问题研究
硬件木马:关键问题研究进展及新动向
转录组与代谢联合解析红花槭叶片中青素苷变化机制
面向云工作流安全的任务调度方法
天然虾青素等有效成分的提取、纯化和超细化、微囊化研究
虾青素/环糊精超分子体系的主客体识别机理研究
微藻生物合成虾青素的调控机制
聚合法无机粉体微粒的高分子微囊化复合微球