Nitrogen removal is crucial to guarantee water security and the safe reuse of wastewater. Denitrification is an important step for nitrogen removal. Especially, the biological denitrification process has obtained more attentions due to its characteristics of low cost, high efficiency and environmental friendly. However, the current biological technology is usually limited to the lack of carbon source (endogenous electron donor), which brings big challenge for wastewater treatment. Thus, it is urgent to develop new and practical denitrification technologies to improve the water quality. .This study will develop a new hybrid denitrification process built-in with electrode bio-carrier basing on the pathway of electrode autotrophic denitrification, which dominated by bio-electrochemical system, and establish a new method that coupling heterotrophic denitrification with electrode autotrophic denitrification. The multifunction of electrode bio-carrier in the hybrid system will be comprehensively investigated in the view of hydrodynamics, micro electric field control and microbial synergy. And through some specific index of fluid model, bio-electrochemistry and microorganism, the contribution of electrode bio-carrier to the denitrification process will be respectively quantified from the three aspects. In addition, the denitrification pathway by using the electrons directly from electrode and through extracellular electron transfer will be revealed. Moreover, the synergy mechanism of electrodic and other bacteria for denitrification enhancement will be analyzed. This study intends to provide theoretical and technical basis for the scaling-up and application of the hybrid denitrification process.
污水深度脱氮是保障水安全和实现废水安全回用的重要前提,其中,反硝化是废水脱氮的重要环节,生物反硝化由于具有成本低、效率高和环境友好性的特点而备受青睐,但现有生物技术受限于内源电子供体不足(碳源不足)的现象十分严重,使废水达标排放面临巨大挑战,亟待开发实用性强的反硝化技术。.本研究基于生物电化学系统主导的电极自养反硝化新途径,构建内置电极生物载体的复合型反硝化工艺技术,建立电极自养反硝化耦合异养反硝化脱氮的新方法,并对该系统中电极生物载体的多元作用机制提出分解剖析的研究思路,从流态强化、微电场调控和功能微生物协同作用三个方面逐层揭示。选取流态、生物电化学、微生物的特异性指标,分别量化电极生物载体对反硝化过程的贡献,明晰电极作为电子供体及通过胞外电子传递强化反硝化的途径,解析电极活性微生物与其它微生物通过种间协作对反硝化的强化机制,为复合型反硝化工艺的规模化应用提供理论和技术基础。
废水深度脱氮是保障水安全和实现废水安全回用的重要前提,其中,反硝化是废水脱氮的重要环节,生物反硝化由于具有成本低、效率高和环境友好性的特点而备受青睐,但现有生物技术受限于内源电子供体不足(碳源不足)的现象十分严重,使废水达标排放面临巨大挑战,亟待开发实用性强的反硝化技术。.本研究以构建高效的内置电极载体的复合型反硝化工艺,并全面解析电极生物载体的多元作用机制为总体目标。主要完成以下内容【1】通过计算流体力学模拟(CFD)和响应曲面(RSM)优化,解析了电极生物载体基于流态优化对反硝化的增效机制;【2】通过探究不同电位调控下,不同C/N比污水的反硝化性能,明晰电极作为电子供体的自养反硝化途径及对反硝化的强化贡献;【3】通过电极材料的修饰,进一步提高电极的电化学性能及生物相容性;【4】通过对电极表面电活性生物膜结构、组成、功能的分析,揭示了电极生物载体对复合型反硝化工艺中微生物群落结构和功能演替的影响规律。通过对电极生物载体多元作用机制的进一步揭示,对复合型反硝化工艺的设计、调控和规模化应用,提供理论和技术指导,进而推动废水深度净化和再生回用的进程。.项目执行期间发表SCI收录论文9篇,均为JCR一区;获授权中国发明专利5项,申请中国发明专利3项,申请PCT专利3项,申请美国发明专利2项。培养硕士研究生2人,本科生2人,项目负责人晋升副教授职称,项目参与人晋升副高级职称4人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于电气石自发电极的异养/自养反硝化系统深度脱氮机制与应用研究
固定化反硝化菌电极及其去除饮用水中硝酸盐的研究
纳米电极在地下水氮素去除过程中固液两相界面的化学/电化学作用机制及硝化反硝化机理研究
新型电导载体强化反硝化脱氮工艺构建及胞外电子传递-反硝化功能菌协作机制研究