In the present thesis, the third-generation biosensor is prepared by making use of the unique effects of nanoparticle materials, especial the metal nanocrystal. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response of the biosensor is increased significantly. Based on our experiment, it could be accounted for the combined effect of the conductivity, macroscopic quantum tunneling, chemical activity, catalytic activity and microarray electrode effect, in addition to surface effect of metal nanoparticles. The results will make a basis of improving the performance of biosensor, and developing the direct electron transfer biosensor, open up a new road to miniaturize the biosensor. It can make a basis of research, preparation and use of the biosensor enhanced by nanoparticles.
本项目应用超分子自组装成膜技术,经软化学途径,实现酶蛋白分子和纳米颗粒的定向组装和纳米层次有序结构的调控,研究酶/纳米颗粒薄膜的有序化组装规律和机理,构建酶与电淠苤苯拥缱哟莸牡谌干锎衅鳌L岣呙傅鞍追肿邮侗鸨∧さ男畔⒋碜患复菽芰Γ诘谌咸烟巧锎衅鞯脑硌芯炕∩希兄埔谎趸厦肝⑿蜕锎衅鳌
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
不同改良措施对第四纪红壤酶活性的影响
基于Pickering 乳液的分子印迹技术
多疲劳源,复杂构件全寿命原理及计算研究
酶的直接电化学和第三代生物传感器研究
用于第三代基因测序系统的石墨烯纳通道跨尺度集成制造原理及方法研究
以损伤理论为基础的高温构件设计原理