Implantable medical devices (IMDs) emerge to be an important means of diagnosing and treating diseases nowadays, but their lifespan (e.g. pacemakers last only 5-10 years) is limited by battery capacity and needs to be regularly replaced by surgery. Recently, innovations in energy harvesting technologies have made it possible to power the IMDs by collecting energy from human body itself. Previously, we have successfully harvested biological energy of heartbeats and dilation of ascending aorta using nanogenerator technology and achieved accurate monitoring of pathological and physiological indicators of cardiovascular system. .However, there are still some problems in existing researches, such as trauma, low energy-scavenging efficiency, disturbance on physiological process, and patient discomfort. Based on enlightenment from clinical work and the researching experience of bioenergy harvesting, we now propose a new concept of combining nanogenerator and endovascular intervention technology. This project will use ePTFE membranes as a base and also the negative friction layer to design and construct a collapsible, flexible and stretchable triboelectric nano-covered stent. We plan to implant the device into the cavity of the descending thoracic aorta in the similar way as transplanting artificial blood vessels. Relying on the stress of blood flow on arterial wall, the device can simultaneously harvest the endovascular biological energy and achieve real-time monitoring of the cardiovascular system. Comprehensive biocompatibility tests will be performed to develop a packaging strategy for the energy harvesters suitable for endovascular application. This project aims to provide an innovative one-stop solution for power and sensing needs of IMDs.
植入式医疗设备(IMDs)是当今诊治疾病的重要手段,但其寿命(如心脏起搏器只有5-10年)受制于电池容量,需定期通过手术更换。近年,能量采集技术的革新使依靠人体自身能量为IMDs供电成为可能。我们前期利用纳米发电机技术成功采集了心脏和升主动脉搏动的能量,并实现了对心血管病生理指标的精准监测。.然而,现有研究仍存在创伤大、采集效率低、影响生理功能、可致患者不适等不足。针对这些问题,我们基于临床工作的启发和对生物能采集的积累,萌发了融合纳米发电机与血管腔内介入技术的新构想。本项目将以ePTFE薄膜为基底和负性摩擦层,设计并构建可折叠的、富有柔性和延展性的摩擦式纳米覆膜支架,以人工血管的形式经导管植入胸降主动脉腔内,依靠血流的应力同时实现腔内生物能的采集和对心血管系统的实时监测,并通过全面的生物相容性测试为腔内能量采集装置制定封装策略,从而为IMDs的供电和感知需求提供创新的一站式解决方案。
植入式医疗设备(IMDs)是当今诊治疾病的重要手段,但其寿命(如心脏起搏器只有5-10年)受制于电池容量,需定期通过手术更换。近年,能量采集技术的革新使依靠人体自身能量为IMDs供电成为可能。在本项目中,我们拟将纳米发电机与血管腔内介入技术融合,通过经导管植入这一微创的方式实现对心血管腔内能量的采集,以及对血流动力学的实时监测。.基于本项目的构想和目标,我们完成了封装材料的性能评价和生物安全性评价、并制定了适应经导管植入腔内的封装策略,在两套体外模拟测试系统的基础上进行了体外测试,并构建出具备良好延展性和柔性的图案式薄膜纳米发电机和类支架式纳米发电机,最终将微型摩擦式纳米发电机植入到心腔内,成功地实现了对血流动力学的实时主动监测。发表高水平SCI论文1篇。本研究虽未完全达到拟定目标,但目前已积累了经导管植入腔内能量采集与主动式传感装置的部分关键技术,一定程度上解决了压缩进导管的性能损耗问题,充分验证了腔内能量采集与传感的可行性和应用潜力。.随着今后进一步对性能和结构设计的优化,本项目的研究成果将可能针对IMDs的供电和感知需求提供创新的一站式解决方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
神经退行性疾病发病机制的研究进展
带有滑动摩擦摆支座的500 kV变压器地震响应
结直肠癌免疫治疗的多模态影像及分子影像评估
智能煤矿建设路线与工程实践
TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老
基于血管腔内重建技术的新型内皮祖细胞捕获脑血管覆膜支架的实验研究
脑出血后囊腔内生物支架-OECs-NRPs自体联合移植的实验研究
颅内覆膜支架及其内皮化机制和促内皮化研究
生物可降解镁合金覆膜支架治疗犬颈内动脉动脉瘤模型的实验研究