The numerous bio-surfaces and bio-interfaces with intriguing adhesive behaviors in the natural world have inspired human being in their explorations and inventions in the areas of bionics. Inspired by the dusty spider dragline silk, our research group has discovered another aspect of micro- and nano-fibers’ adhesive behaviors, which for long was based on the knowledge of their tip-to-substrate adhesion, typically known as the Gecko Adhesion. Our discovery has proved that not only the tip, but also the whole length of the fine fibers could generate considerable adhesion, particularly to the fine particular matters surrounding them. In our lab, we managed to mimic such nanofibrous adhesion via electrospun polymeric nanofibers by simulating the conditions of the spider silk’s adhesion. And we have also set initial qualitative understanding toward such nanofibrous adhesion. In the following research, we plan to take the next step to quantitatively study this phenomenon, including the effect of parameters on Nanofibrous Adhesion. The detailed factors should contain the fibers’ diameter, chemical composition, surficial secondary structures, temperatures and humidity. We believe only by figuring out the mechanism of these parameters could we find out the nature of such adhesion. Based on that, then we could adjust and manipulate such adhesion, develop its potential value and finally realize the massive reproductions of nanofibrous adhesion related materials and devices.
自然界中存在的各种特殊生物粘附性表面一直是仿生学研究的热点。受蜘蛛丝表面能够粘附空气中微小颗粒物现象启发,本课题组开展了超细纤维表面微纳米尺度粘附行为研究,发现人工制备的纳米纤维对细颗粒物的粘附行为与壁虎脚的粘附机理具有相同之处。本研究拟在上述定性研究基础上,借助课题组在仿生智能界面材料和聚酰亚胺设计制备方面的经验,深入研究超细纤维在微纳米尺度的表面粘附现象。首先设计合成新型聚酰亚胺,然后利用静电纺丝法制备得到一系列具有不同理化性能的微纳米纤维,通过精确的原位表征测试,系统研究纤维尺寸、纤维表面化学组成、纤维形貌、细颗粒物尺寸与化学组成和温湿度等诸多因素对该种超细纤维粘附现象的影响,以深入揭示超细纤维-细颗粒物粘附作用的内在机理。在此基础上,探索其在高效过滤材料、个人防护材料、新型集水工具、大气污染治理、功能及智能化器件等方面的应用,以期进一步拓展微纳米纤维材料的潜在应用价值。
受蜘蛛丝表面能够粘附空气中微小颗粒物现象启发,本课题组开展了超细纤维表面微纳米尺度粘附行为研究,发现人工制备的纳米纤维对细颗粒物的粘附行为与壁虎脚的粘附机理具有相同之处。借助课题组在仿生智能界面材料和聚酰亚胺设计制备方面的经验,深入研究了超细纤维在微纳米尺度的表面粘附现象。首先设计合成新型聚酰亚胺分子,然后利用静电纺丝法制备得到了一系列具有不同理化性能的微纳米纤维,系统研究了纤维尺寸、纤维表面化学组成、纤维形貌、纳米粒子的引入、细颗粒物尺寸与化学组成和温湿度等诸多因素对超细纤维粘附现象的影响,揭示了超细纤维-细颗粒物粘附作用的内在机理。在此基础上,探索了其在高效过滤材料、个人防护材料、大气污染治理等方面的应用。所制备的超细纤维膜具有潜在的应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
超微/纳米日光转换材料的尺度与表面改性效应
超细晶材料在冲击载荷下的剪切局部化行为
表面等离子体共振纳米结构在原子尺度下的强耦合行为研究
介观尺度下荷电雾滴表面特性及雾滴内部超细颗粒运动规律研究