关于高阶自守形式情形的Möbius正交性猜想及其在L-函数理论中的应用

基本信息
批准号:11801318
项目类别:青年科学基金项目
资助金额:25.00
负责人:蒋玉蛟
学科分类:
依托单位:山东大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:李太玉,王子豪,王丹,赵蕊
关键词:
Fourier系数自守形式L函数Möbius正交性猜想
结项摘要

Automorphic forms and automorphic L-functions appear to be esoteric and special topics or tools in number theory, and Sarnak's Möbius disajointness conjecture is an important theme in number theory and related areas. This project concerns the Möbius disjointness conjecture on automorphic forms, especially the high rank cases of “Hypothesis C” proposed by Iwaniec-Luo-Sarnak or Titchmarsh's divisor problem. The investigator expects to prove some related results with the strong orthogonality or the power savings. Moreover, together with the approachs of Duke and Iwaniec, the investigator intends to consider the non-vanishing of L-functions in the critical strips and expects to obtain some non-vanishing results for a positive proportion of twisted L-functions, which further have applications to the Rankin-Selberg L-functions and symmetric power L-functions on higher rank groups. The research areas of the investigator are automorphic forms and L-functions. The investigator has shown some important results and published about ten papers. These all ensure the successful accomplishment of this project.

自守形式和自守L-函数是数论中神秘且特别常见的研究对象和研究工具,而Sarnak提出的Möbius正交性猜想是数论及其相关领域中的重要研究主题。本项目拟研究高阶自守形式情形的Möbius正交性猜想,具体是指Iwaniec、Luo和Sarnak提出的“假设C”或者Titchmarsh除数问题的高阶情形,我们期望证明其强正交性或有指数结余。进而,申请人拟用高阶自守形式情形的Möbius正交性猜想结合Duke-Iwaniec方法来研究L-函数在临界带内的非零性,期望获得在扭乘Dirichlet特征L-函数的族类中有正比例的数量是非零的,并且进一步应用到高阶群上的Rankin-Selberg L-函数和对称幂L-函数。申请人研究方向是自守形式和L-函数,在此方向已做出重要工作,且正式发表了十篇Sci论文,这些都确保了本项目能够顺利完成。

项目摘要

Sanark的Möbius正交性猜想是现代数学中的热门研究方向,引起了不仅限于解析数论领域,还包括动力系统、遍历论等领域的世界知名数学家的关注。本项目主要研究了与高阶群上自守形式相关的Möbius正交性猜想问题,在两种类型的Möbius正交性猜想上取得了重要突破和一系列研究成果,一类是Davenport类型的指数和,一类是Titchmarsh除数问题型的平移卷积和。研究成果发表在Math. Ann.、 IMRN、Sci. China Math.、Math. Z.、Canadian J. Math.等著名期刊。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
3

监管的非对称性、盈余管理模式选择与证监会执法效率?

监管的非对称性、盈余管理模式选择与证监会执法效率?

DOI:
发表时间:2016
4

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
5

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021

蒋玉蛟的其他基金

相似国自然基金

1

GL(3)的自守形式和自守L-函数

批准号:11101239
批准年份:2011
负责人:孙庆峰
学科分类:A0102
资助金额:20.00
项目类别:青年科学基金项目
2

高阶自守L-函数的亚凸上界

批准号:11901466
批准年份:2019
负责人:苏峰
学科分类:A0105
资助金额:24.00
项目类别:青年科学基金项目
3

自守表示中L-函数的解析方法及其应用

批准号:10601034
批准年份:2006
负责人:王永晖
学科分类:A0102
资助金额:10.00
项目类别:青年科学基金项目
4

某些自守L-函数的高次积分均值及其应用

批准号:11101249
批准年份:2011
负责人:劳会学
学科分类:A0102
资助金额:22.00
项目类别:青年科学基金项目