As the main representation of biological functions, proteins have become one hotspot of life science research. However, because of the compositional complexity and high background interference from biological samples, How to selectively recognize the target proteins has become a bottleneck in the field of proteomics and disease diagnosis. The combination of surface molecularly imprinted polymers (MIPs) and quantum dots (QDs) has brought bran-new solutions to real-time optical protein recognition and analysis. However, the application of traditional QDs-based surface MIPs is limited by the lack of protein binding sites, low specificity, and interference from background fluorescent of biological samples. In this project, we aim to create room-temperature phosphorence (RTP) protein mesoporous structured imprinting microspheres (SiO2@QDs@ms-MIPs) with high specificity and high anti-interference ability. Specifically, mesoporous nano-SiO2 containing more fine recognition sites is used as the matrix, while RTP QDs with high anti-interference ability is used as the luminescent material. Then we explore the quantitative relationship between the imprinting thickness of SiO2@QDs@ms-MIPs (number of 3D binding sites) and the template elution efficiency, and optimize the matching ratios between the grafted amount of QDs and the specific RTP identified signals of target protein. We also probe into the mechanisms and ability how SiO2@QDs@ms-MIPs selectively identify target proteins. The implementation of this project could help with the high-performance identification and analysis of target proteins in biological samples. This project also will technically underlie the diagnosis and treatment of many diseases.
蛋白质作为生物功能的主要体现者已成为生命科学研究的重点对象之一,但生物样品成分复杂,如何靶向识别目标蛋白已成为蛋白组学和疾病诊断领域研究的瓶颈。表面分子印迹聚合物(MIPs)与量子点(QDs)相结合为蛋白质的光学识别分析开启了全新的解决方案,然而传统基于QDs的表面MIPs对蛋白质的结合位点少,特异性不高,且容易受到生物样品背景荧光的干扰,限制了其实际应用。本项目拟以可创建更多精细识别位点的介孔纳米SiO2为基质,以具有良好抗背景荧光干扰的室温磷光(RTP) QDs为发光材料,发展一种兼具特异性高和抗干扰能力强的RTP型蛋白介孔印迹微球,分析该微球印迹厚度(三维结合位点量)与模板洗脱效率之间的量化关系,优化QDs接枝量与特异性RTP识别信号之间的配比关系,探讨该微球对目标蛋白的选择性识别能力和识别机制。项目的实施可望实现生物样品中目标蛋白质的高效识别分析,也可为众多疾病的诊疗提供技术支撑。
蛋白质作为生物功能的主要体现者已成为生命科学研究的重点对象之一,但由于生物样品成分复杂且存在背景干扰,如何能靶向识别目标蛋白已成为该领域研究的瓶颈。表面分子印迹聚合物(MIPs)与量子点(QDs)相结合为蛋白质的实时光学识别分析开启了全新的解决方案,然而传统基于QDs的表面MIPs对蛋白质的结合位点少,特异性不高,且容易受到生物样品背景荧光的干扰,限制了其在蛋白质识别方面应用。本项目将实现对实际生物样品中特定目标蛋白质的高效识别分析作为研究目标,将如何提高量子点(QDs)表面MIPs对复杂生物样品中蛋白质的特异性识别能力作为关键科学问题,以可创建更多立体精细识别位点的介孔纳米SiO2作为基质,以具有良好抗背景荧光干扰的室温磷光(RTP) QDs为发光材料,发展了一种兼具特异性高和抗干扰能力强的RTP型蛋白介孔印迹微球,分析了该微球印迹厚度(三维结合位点量)与模板洗脱效率之间的量化关系,优化了RTP QDs与介孔纳米SiO2之间的配比关系,探讨了该微球在实际生物样品中对目标蛋白的选择性识别能力,阐明了该微球对目标蛋白的识别机制。本项目研究成果能够为实际生物样品中目标蛋白质的高效识别分析提供新方法,也可为众多疾病的诊疗提供新的技术支撑。除此之外,在本项目的资助和启发下,还将SiO2-RTP量子点纳米复合材料扩展至环境污染物传感器的开发和生物大分子(酶和DNA)功能化RTP纳米复合材料的制备以及长寿命有机RTP材料的开发。在本项目资助下,共发表SCI论文11篇(其中,第一作者8篇,IF>6.0的4篇),并形成了稳定的RTP纳米复合材料科研团队。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
基于二维材料的自旋-轨道矩研究进展
多发光分子微球标记-固体基质室温磷光免疫分析研究
基于Mn掺杂ZnS量子点的四维光学传感用于蛋白质识别分析
识别肿瘤细胞表面特征蛋白质的分子印迹纳米微球的研制
介孔限域构建低温稳定立方相钙钛矿量子点复合微球及生物检测研究