As a typical non-point odor emission source, landfills are always argued for the huge odor emission from the dumping points, and landfill managers are under heavy pressure for the odor complaints from the surrounding people. Both the unclear of typical odor components and the open dumping operations are the main causes for the huge odor emissions from landfill. Understanding the odor property and the reduction of the operation area are the basic pre-requirements for the odor control. In this work, various landfill lysimeters from several kg to hundreds kg scale will be established, to produce the typical MSW odor, and the odor components from the landfills are to be collected for further analysis, which will be compared with the odor components from the lab scale lysimeters, to select the typical odor components. Based on the data accumulation of odor components from different sources, MSW odor descriptors wheel is to be developed and optimized. The typical odor model is to be set by the iteration panel olfactory test step by step, to form an accurate odor component. Then, a spraying film system is to be developed by the application of the different precursors, such as polyvinylalcohol(PVA), Polyvinylpyrrolidone (PVP), hydroxypropylmethylcellulose (HPMC), and the forming time, dynamic viscosity, configuration of film surface are to be used for the preliminary screening on the forming accessory of spraying film. The odor adsorption materials will be selected according to the typical odor model components based on the batch experiments. After that, the fast spraying film system is designed and synthesized by the mixture of the film precursor, solvents, and adsorbents materials. The odor removal efficiency will be assessed by the lab-scale experiments. The operation conditions are to be optimized and the removal mechanisms are to be proposed. The variation of the refuse composition, the degradation byproducts, and the degradation rate are to investigate under the different additives. The evolution of the micro-organisms in the system will be measured, to identify the special putrefying bacteria in the refuses, and the risk of the spraying film in the landfill are assessed through the evaluation of the landfill stabilization process. The results will be useful for the understanding of odor components from landfill and provide a novel way for the odor control in the operation area in landfill.
填埋场恶臭呈现组分复杂、性质多变、控制困难等特点,而组分认识不清、露天作业是其污染严重的主要原因。据此提出恶臭气味模型表达及其靶向捕集隔离方法。通过生活垃圾恶臭气味轮图及基础模型研究,构建恶臭定向捕集与喷雾成膜隔离系统,实现填埋场作业面恶臭快速、便捷、持久削减目的。本项目以实验室模拟、数据统计分析、现场验证为主要手段,通过实验室和实际填埋场恶臭源组分异同和主要组分筛选,绘制生活垃圾恶臭气味轮图;采用动态配气和人工嗅辨,逐次迭代逼近实际恶臭等方法,构筑高逼真生活垃圾恶臭气味模型;借助药剂配方设计和工艺优化,探索膜特性和成膜过程相转变机理;利用精确定位感觉标靶法,考察喷雾成膜捕集系统的恶臭削减效果,阐明恶臭靶向捕集作用机制;基于体系内微生物菌群构成、种属演变规律和水质传输特性研究,评价成膜捕集系统应用对于生活垃圾降解过程的影响。研究成果为复杂臭气源识别模拟、填埋场类面源恶臭削减提供新的思路。
围绕填埋场恶臭这一主要邻避效应诱因,通过多场地的长期实地采样和实验室填埋模拟,借助感官嗅辨-GC/MS检测-电子鼻传感以及模糊综合评分法等多维分析手段,识别与筛选了垃圾恶臭释放模式和特征组分,绘制了收运处全过程气味轮图,提出并优化了功能喷雾膜隔离层控制恶臭的应用。主要结论如下:1)生活垃圾臭气浓度随垃圾处理流程逐渐增加,卸料区和渗滤液收集区分别是中转站和填埋场的主要恶臭源。氨和含硫恶臭化合物分别是主要的化学(>86.3%)和嗅觉(>94%)贡献组分。气味轮图结果表明,收集阶段建议优先控制恶臭污染物为甲硫醇、氨、二甲二硫、丙烯醛和甲硫醚等;转运阶段为氨、丙烯醛、甲硫醇、甲基丙烯醛和二甲二硫等;填埋阶段为氨、丙烯醛、硫化氢、甲硫醇和甲硫醚等。2)模糊综合评分法表明,填埋场的特征恶臭组分为硫化氢、甲苯、氨、乙酸乙酯和乙苯等,而堆肥厂为氨、乙酸乙酯、苯、乙苯和正己烷等。3)随有机物比例的增加(5%~20%),ERtotal、TOCtotal和ERENC分别升高10.9、20.6和2.1倍。综合分析,有机物含量建议低于10%或垃圾滤液DOC小于101.3 mg/L。4)5%聚乙烯吡咯烷酮和0.25%聚乙烯亚胺可在5 min内形成具有一定延展性的喷雾膜,可有效控制氨(64%)、硫化氢(43%)和甲苯(14%)等填埋场特征恶臭。当添加0.1%碳酸氢钠时,氨、硫化氢和甲苯的去除率分别提高28%、39%和20%。5)填埋作业面的平均臭气浓度释放速率为0.722±0.601 OU/(m2·s),春季和夏季的早上和傍晚为恶臭重点控制阶段。氨、含氧化合物和卤代化合物是主要化学贡献组分,含硫化合物是主要的理论臭气浓度贡献组分(97.4%~99.3%)。以臭气浓度释放速率计算,填埋作业面的CALPUFF模拟防护距离约为1.51 km,以理论臭气浓度计算时约为1.18 km。6)10%矿化垃圾+10%污泥基生物炭+喷雾膜组成的功能覆盖隔离层对氨、硫化氢和甲苯的去除率分别为72%~94%、55%~83%和51%~85%,生物降解和吸附为氨和硫化氢的主要去除途径,而甲苯主要为物理吸附,覆盖层厚度可为20~40 cm。
{{i.achievement_title}}
数据更新时间:2023-05-31
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
基于LASSO-SVMR模型城市生活需水量的预测
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
粉末冶金铝合金烧结致密化过程
5~7岁住院癌症患儿生活质量自我报告与父母报告的一致性研究
新型中空纤维膜渗透与低温相变复合的CO2捕集机理研究
荷电液滴捕集颗粒物变尺度建模及捕集机理
新型功能化离子液体相变体系的构建及其捕集CO2反应机理
腐化抑制诱导填埋场恶臭/甲烷气链式控制过程研究