As compared to the conventional approaches to synthesize inorganic nanomaterials, we designed new strategies to prepare inorganic nanocrystals by using the monomers of conducting polymers as the reducing reagents and to assemble nanocrystals/conducting polymer nanocomposites. Our proposals have multiple advantages, such as the wide applicability, good reproduciblity, and massive yields for producing a wide range of nanocrystals, including metal oxides and sulfides, and the corresponding nanocomposites with rich nanostructures and superior physicochemical performance. In this research project, we proposed that both nucleation and growth of nanocrystals and nanocrystal/conducting polymer composites should be dominated by the selective adsorption, conformation changes, steric hindrance, coordination of conducting polymer chains,and donor-acceptor interactions after the polymerization of the appropriate monomers or their supramolecular derivatives is initiated by high valent metallic ions. Consequently, the control over the morphologies of the as-prepared inorganic nanocrystals and nanocrystals/conducting polymer nanocomposites, the tailoring of the interfacial structures among nanocomposites, and the development of ordered assembly/organization are expected to achieve such that the design and preparation of nanocrystals and nanocomposites, which show excellent physicochemical properties, should be successfully performed. Herein, we intend to i) carry out the investigations into the shape- and size-controlled syntheses of novel nanocrystalline metal oxides and suldides as well as their nanocomposites by systematically choosing or synthesizing suitable monomers; ii) to implement the design of the construction and assemblies of the ordered nanocrystals supported on conducting polymers and of the co-assemblies of ordered nanocomposites comprised of nanocrystals and conducting polymers via various routes, in order to rule out the aggregation of nanocrystals into larger aggregates which accounts for the decrease in active surface areas and deteriorating the physicochemical performance. This will also allow us to gain the remarkedly increased synergstic effects of nanocrystals loaded on conducting polymers, giving rise to the enhanced performance; iii) to explore the relations between optimal physicochemical performance and the corresponding structural integration and assembly. The current proposals will not only enable us to establish new and alternative methods to prepare nanocrystals and nanocrystals/conducting polymers nanocomposites but also to develop the extensive applications of those aforementioned functional nanomaterials in photocatalytic and electrocatalytic reactions, optical and electrical devices, and advanced energy materials.
较之传统的无机纳米材料合成,以导电高分子单体为原料制备无机纳米晶体、纳晶/导电高分子复合材料具有适用性广,产量大,结构多样,物理化学性能独特等优势。本项目拟通过由高价过渡金属离子引发适宜的导电高分子单体及超分子衍生物聚合,借助导电高分子的选择性吸附、构象位阻、配位效应、给体-受体相互作用等控制纳晶或纳晶/导电高分子纳米复合材料的成核和生长,调控纳晶和复合材料的形状、界面结构和组装排列均匀性。申请人拟通过系统选用或合成多种不同的单体为原料,合成金属氧化物、硫化物纳晶及相应复合材料;实现纳米结构的无机/导电高分子复合材料两相之间的组装,有序性构建;探索纳晶/导电高分子复合材料的光电、催化性能。解决当前复合材料组分之间聚集与无序性问题,创立并发展纳晶与复合纳米材料合成的新方法,并为光电催化、能量存储提供多种性能优异的纳米结构材料。探索复合材料性能与对应组分之间的组装集成关系。
开发新型、高效、普适的方法实现控制纳米材料结构、组成、与功能的多样化,从而开发出高性能的光电功能材料,先进清洁能源材料均具有重要意义。本项目以导电高分子单体为原料库,采用多种合成与制作方法实现了精确调控花色繁多的纳米材料尺寸与形状、组装排列、以及纳米复合材料的层次结构和组成,成功建立了一种适用性广、产量大的制备无机纳米材料、无机/导电高分子复合纳米材料的系统、独特方法。. 通过本项目的实施,本课题组在功能化低维纳米材料、纳米合金催化剂的合成、构架以及它们的光电性能和光、电催化性能研究方面取得了卓有成效的进展。主要成果包括:i) 采用邻茴香胺为还原剂并调节合成条件,制备出超细的Ru掺杂α-Fe2O3纳米棒。模拟太阳光辐照下,含5 at%Ru掺杂剂的α-Fe2O3纳米棒膜显示极高的光电化学催化水氧化活性(1.23 VRHE,光电流密度为~5.7 mA cm−2)和稳定性;ii) 以吡咯或2-甲氧基-5-硝基苯胺为还原剂,经过系列步骤合成出具有超高氮含量(~16 at%)的尺寸均匀、密排列的N掺杂超薄碳纳米带,具有超高的体积电容(645 F cm−3);iii) 以2-甲氧基-5-硝基苯胺为还原剂,在泡沫镍(NF)上直接生长由超细CoNiSe2纳米棒组成的分级纳米结构,此一体化的CoNiSe2/NF作为一种给力的电催化剂,对水分解显示极高的活性与稳定性;iv) 选用多种不同的导电高分子单体为原料,在简单液相条件下分别大规模合成出多样形貌、宏观维数的自组织、密堆积超长Se纳米线超结构以及一维组装的CdSe、PbSe量子点,所制备的产物显示优异的电学性能;v) 合成了各种高质量的分枝纳米结构贵金属电催化剂,包括Pd, Pd@Rh, Pd@AuCu, 和Pd@PtCu,以及空心的Pt–Au纳米笼电催化剂。这些电催化剂分别对甲醇电氧化和氧还原反应具有优异的催化活性和稳定性。. 本课题中,我们通过采用导电高分子单体为工具箱实现了对多种新型纳米材料的结构、组成精确调控及相关性能所做的系统研究,不仅为今后进一步开拓合成新型无机和复合纳米材料提供了技术路线和理论基础,而且为纳米材料在清洁能源转化和存储中的应用开辟了广阔的空间。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
面向云工作流安全的任务调度方法
基于二维材料的自旋-轨道矩研究进展
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
导电高分子微结构材料
导电高分子纳米图案化方法及性能的研究
导电高分子薄膜的结构与性能研究
聚硅烷/碳纳米管导电高分子材料合成、表征及结构与性能关系研究