In this project, the design and critical technique of a multifunctional device for bionic simulation of human foot-ankle complex will be developed and investigated using combination drive and control techniques of servo motor and hydraulic system. A novel combined mechanism is to be creatively designed to simulate the human tibia motion with 5 degrees of freedom. The rapid and accurate motion control of the motor and the reliable, stable and rapid load application of hydraulic system are integrated in this device. Motion and loading of the device are to be cooperatively controlled by developed software based on optimizing control strategy. And then, many motion modes of human foot-ankle complex can be simulated and corresponding mechanical parameters can be measured synchronously using the device. At the same time, a database of kinematic and dynamic parameters of human foot-ankle complex based on the results of kinematic and dynamic experiment and analysis of volunteer's motions of low limbs will be developed. And professional package will also be designed and developed for kinematic and dynamic simulation and analysis of human foot-ankle. The database and package will be integrated with the control software, which ensures the device with functions of motion control, load application, mechanical measurement, database, simulation and analysis. Many trials of motion simulation of human cadaver foot-ankle are to be design and performed to test the repeatability precision and reliability of the device. The software and structure of the device will be optimized and improved according to tested results, which will make it to be international leading test instrument for foot-ankle biomechanics research. The biomechanical behavior mechanism and interaction between adjacent segments of human foot-ankle motion system will be revealed by motion simulation, measurement and analysis on the device. Consequently, a dynamic test and theoretical research method will be developed and used to study the disease biomechanical mechanism of foot-ankle motion system, demonstrate the surgery plan, study the sport injury and protection and develop bionic foot-ankle system.
研究基于电机、液压混合驱动控制的多功能人体足踝仿生试验装置的设计和关键技术。通过机构叠加组合创新设计实现胫骨的六个自由度运动;采用电机和液压系统分别实现快速、精确运动和可靠、稳定、快速载荷施加;通过控制策略优化实现运动和加载协调控制,实现人体足踝多种运动功能的仿生模拟和力学行为参数测量。基于活体运动学和动力学测量与分析结果开发足踝运动学和动力学参数数据库软件模块,并开发足踝运动学和动力学专业仿真分析模块,使该装置同时具备足踝运动模拟控制与力学测量、数据库支撑和测量数据的专业分析功能。通过尸体足踝运动模拟试验考量其工作性能指标并进行软、硬件的优化和提高,使其成为国际领先的足踝运动力学研究工具。从而把一直以来蒙着神秘面纱的足踝运动系统内部作用的生物力学机理在该装置上动态展现出来,为足踝运动系统疾病机理探讨、手术方案的科学论证、运动损伤与防护研究、仿生足踝系统研制等提供动力学实验和理论研究平台。
探讨人体足踝各组成部分之间的力学作用关系,包括相对运动和相互作用力关系以及使足踝完成正常步态和各种复杂运动时肌肉力的时间历程变化规律成为足踝生物力学领域亟待研究的课题。而完成这些研究,要研制多功能人体足踝运动和动力学模拟及测量装置,实现活体测量无法进行的试验,同时获得活体试验无法得到的力学和运动学参数。本项目研制了一台基于电机、液压混合驱动控制的人体足踝仿生试验装置,开发了控制程序,提出基于迭代学习的运动和加载闭环控制算法,使仿真试验装置在模拟运动、时间、精度、负荷重量、调试效率等指标上和国际同行相比具有竞争力;建立了足踝与模拟机系统的运动学和动力学仿真数值模型,研究了模拟机的模拟能力及控制参数,为控制程序的优化提供支撑,同时为临床生物力学研究提供新的手段和方法;通过假脚和尸体脚步态模拟试验验证了模拟机的可靠性和重复精度,测试结果令人满意;建立了足踝系统应力-骨重建仿真分析数值模型,对正常足踝步态下的应力状态进行了分析,揭示了足踝步态下的生物力学行为特性,同时为基于远期生物力学效果预测的新型人工踝关节假体设计提供理论评估方法。在此基础上,提出并完善足踝系统步态仿真的理论和方法,把足踝系统的生物力学研究提升到一个动力学分析平台上进行,为足踝系统功能的生物力学探讨、疾病和治疗的生物力学机理研究、个性化支具设计的生物力学评价体系建立提供更为科学的手段。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
氯盐环境下钢筋混凝土梁的黏结试验研究
基于二维材料的自旋-轨道矩研究进展
人体足踝步态仿真的理论和方法研究
多功能驱动踝足康复矫形器设计、步态分析与控制方法研究
高性能液压驱动四足仿生机器人基础理论与关键技术研究
基于MR成像的足和踝精细解剖及损伤机制研究