On the one hand, the forging press system studied has complex nonlinearity with strong coupling between the movement of nonlinear equipment and the forming process of forging part. Since the mechanism of the forming process is unclear and there exists many uncertain influences during movement of the forging equipment, the analytic model of the forging press system is difficult to obtain, which causes difficult to design and control. On the other hand, the traditional design methods are difficult to design not only the robustness of the strongly nonlinear system but also the stability and dynamic robustness under uncertainty. Moreover, the existing modeling methods do not consider the relation between the movement of forging equipment and the forming process of forging part. Furthermore, the traditional control methods do not consider both the model difference between different movement stages and the feature difference between all parallel driven systems. All these cause poor forging performance and undesirable forging production. Thus, for high-performance and high-precision forging production, a systematic method, including novel system design method, process modeling method and control method, should be developed. .Aiming at the shortcomings of the traditional methods and according to the feature of the forging press system, a systematic method is developed including the following three aspects. First, on basis of the traditional robust design method, a new robust design method is proposed to consider the influence of the nonlinearity and model uncertainty to the system static performance as well as the stability and dynamic robustness design under uncertainty. Then, the interaction mechanism between the movement of nonlinear equipment and the forming process of forging part is studied, and a modeling method that integrates the advantages both the mechanism modeling and the data modeling is proposed to model the whole forging process. On this basis, a new control method, first using sub-controller to control sub-process and then using supervision control to handle the coupling between sub-processes and coordinate the action of all sub-controllers, is proposed to control the forging press system.
大型模锻系统是一种典型的复杂大惯量装备与微观流变成形的强耦合系统,影响因素众多且存在大量的不确定性。而传统的设计方法不能处理不确定性下非线性装备设计问题与动态性能设计问题,已有的建模方法割裂了微观流变成形与宏观装备运行状态之间的联系,传统的控制方法也不考虑运行段之间的模型差异与并行驱动回路之间的特征差异,导致系统严重偏离理想的设计性能也难以获得所需的工艺条件,无法实现锻件形/性协同制造。为此,必须对大型模锻装备的设计、建模与控制进行全方位的研究。.以大型模锻装备的整体性能为目标,首先创新鲁棒设计方法,在传统鲁棒设计方法的基础上考虑系统的非线性、模型不确定性、稳定性与动态鲁棒性,实现不确定性下静/动态设计要求;其次,研究微观成形过程与宏观装备运行状态的相互作用机制及结合机理与数据补偿的全锻造过程建模方法;再次,研究全锻造过程的"分治-协调"控制原理与策略,实现分段精确运行与多缸同步控制。
大型模锻系统是一种典型的复杂大惯量大流量机电液装备与流变成形过程的耦合系统,影响因素众多且存在大量的不确定性。而传统的设计方法不能处理不确定性下非线性装备设计问题与动态性能设计问题,已有的建模与控制方法难以保证模锻装备的精确运行,导致系统严重偏离理想的设计性能也难以获得所需的工艺条件,无法实现锻件形/性协同制造。. 本项目以大型模锻装备的整体性能为目标,针对复杂装备在参数、模型等不确定性下的设计制造问题,将控制与建模的思想有机地嵌入到传统的设计中,创新鲁棒设计方法,提出了基于变灵敏度的鲁棒设计方法及混合数据与模型的鲁棒设计方法,分别解决了参数不确定性与模型不确定性下非线性静态系统的鲁棒设计问题,实现了系统所需的鲁棒性能;针对动态系统的鲁棒设计问题,分别提出了基于稳定性的鲁棒特征值设计方法和基于扰动理论的动态鲁棒设计方法,实现了系统所需的动态性能。. 为解决大型模锻装备复杂非线运动过程的精确控制问题,开展了全锻造过程建模研究,建立了“解析建模+数据补偿”的负载力建模方法,并针对不同运行工况,提出了多种数据驱动的大型模锻装备运行建模方法,实现了复杂锻造过程的精确建模。在此基础上,开展了大型模锻装备运行控制与并行同步驱动控制的研究,建立了适应不同工况与条件的运行控制策略,保证了多缸精确同步驱动与稳定运行。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
滚动直线导轨副静刚度试验装置设计
大型复杂人机系统结构、过程建模与组织设计方法研究
全断面大型掘进装备集成控制与优化运行理论及应用
航空航天难加工大型复杂构件等温锻造过程温度均匀与极低速稳定运行控制
复杂装备设计质量多关联参数反演建模及预测控制研究