广义相交矩阵李代数及其量子代数

基本信息
批准号:11171233
项目类别:面上项目
资助金额:45.00
负责人:谭友军
学科分类:
依托单位:四川大学
批准年份:2011
结题年份:2015
起止时间:2012-01-01 - 2015-12-31
项目状态: 已结题
项目参与者:彭联刚,吕瑞,卢明,赵小娟,耿圣飞
关键词:
广义相交矩阵李代数表示论量子代数KacMoody代数
结项摘要

本项目将在以下几方面研究由ADE型Cartan矩阵的2-fold仿射化确定的广义相交矩阵李代数(简记为gim代数)及其量子代数(简记为量子gim代数)的结构和表示:利用相应的覆盖Kac-Moody代数、广义双曲Kac-Moody代数刻画gim代数的根系、Weyl群;研究覆盖Kac-Moody代数的可积最高权模分别限制在gim代数和广义双曲Kac-Moody代数上的模结构;利用Lusztig对称刻画量子gim代数的具有PBW性质的基;刻画量子gim代数的Drinfel'd-Jimbo余乘与量子环面李代数的余乘之间的关系;研究量子gim代数的有限维表示,研究环面李代数上的Toda系统的完全可积性。

项目摘要

本项目研究了与ADE型Cartan矩阵的2-重仿射化有关的李代数, 包括广义相交矩阵李代数(以下简称gim代数)、覆盖Kac-Moody代数和一类轨道李代数(即计划书中的广义双曲李代数). gim代数是仿射李代数的自然推广, 与环面李代数有密切联系; 而轨道李代数与一类Borcherds意义下的广义Kac-Moody代数有密切关系. 本项目对于无穷维李代数的研究具有参考意义. . 我们研究了gim代数的根、Weyl群、非退化不变双线性型; 利用轨道李代数的非迷向虚根得到了gim代数的0-根子空间和中心的刻画. 在此基础上我们计算了gim代数的某些外导子. 这些结论充分体现了gim代数的不同于Kac-Moody代数的特点. 我们证明了量子gim代数同构于覆盖Kac-Moody代数的量子群的一个右余理想子代数. . 我们证明了轨道李代数同构于覆盖Kac-Moody代数的一个不动点子代数(这是一个广义Kac-Moody代数)的一个子代数, 由此得到了这个广义Kac-Moody代数的根系的刻画, 以及它和轨道李代数的根的重数之间的一个不等式关系. 我们证明了轨道李代数同构于一个Lorentizan Kac-Moody代数的子代数; 给出了一个较为一般的构造Kac-Moody代数的Kantor意义下的局部李代数结构的方法, 这个方法适用于Lorentzian Kac-Moody代数和这里的轨道李代数, 由此得到了轨道李代数的某些根的重数和某些可积最高权模的branching rule的刻画.

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于细粒度词表示的命名实体识别研究

基于细粒度词表示的命名实体识别研究

DOI:10.3969/j.issn.1003-0077.2018.11.009
发表时间:2018
2

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021
3

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021
4

感应不均匀介质的琼斯矩阵

感应不均匀介质的琼斯矩阵

DOI:10.11918/j.issn.0367-6234.201804052
发表时间:2019
5

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

基于协同表示的图嵌入鉴别分析在人脸识别中的应用

DOI:10.3724/sp.j.1089.2022.19009
发表时间:2022

谭友军的其他基金

批准号:10301024
批准年份:2003
资助金额:9.00
项目类别:青年科学基金项目
批准号:10226027
批准年份:2002
资助金额:2.50
项目类别:数学天元基金项目

相似国自然基金

1

广义相交矩阵李代数及其相关的Kac-Moody代数研究

批准号:11626189
批准年份:2016
负责人:吕瑞
学科分类:A0105
资助金额:3.00
项目类别:数学天元基金项目
2

相交矩阵李代数等若干问题的研究

批准号:11871249
批准年份:2018
负责人:夏利猛
学科分类:A0105
资助金额:53.00
项目类别:面上项目
3

扩大仿射李代数及其量子代数

批准号:10301024
批准年份:2003
负责人:谭友军
学科分类:A0104
资助金额:9.00
项目类别:青年科学基金项目
4

广义仿射李代数与Cartan型李代数的结构与表示理论

批准号:10371100
批准年份:2003
负责人:谭绍滨
学科分类:A0104
资助金额:16.00
项目类别:面上项目