The underactuated two-wheeled vehicle possesses compact structure, flexible steering capability, by which such vehicle is suitable to carry out autonomous exploration under the complicated and dynamic unstructured environment. However, the longitudinal skidding and lateral slipping phenomena are readily taken place for this kind of vehicle on the low adhesion road, subject to the two-point wheel-terrain interaction. The project develops investigations aiming at this practical engineering problem. The skidding/slipping mechanisms are explored by applying terramechanics and vehicle dynamics theories; the skidding and slipping models are proposed based on the broken ideal nonholonomic constraint; the fast and robust observation principle is presented to estimate the skidding/slipping states, and then the anti-skid and anti-slip methodologies are addressed by terminal sliding mode and dynamic neural network technologies; a dynamic model with full information of the two-wheeled vehicle is derived which concludes skidding/slipping states and underactuated dynamics; the instable and non-minimum phase characteristics of the zero dynamics for the underactuated system are investigated; a composite control theory is established, by which the function of the inner dynamics stabilizing is able to be achieved; and lastly, a hierarchical coordination control approach is proposed for the two-wheeled vehicle orientated to multidimensional control objectives, e.g., balancing and tracking. The research results can increase the movement precision and enhance the adaptability for the ground for the vehicle, especially under the unstructured environment.
欠驱动两轮车结构小巧、转向灵活,适合在复杂多变的非结构化环境中执行自主探测任务。但是受轮地两点接触方式的限制,该类车辆极易在弱附着地面上发生纵向滑转和侧向滑移。本项目针对此工程问题开展相关研究。应用地面力学和车辆动力学理论,揭示弱附着地面车辆轮滑效应及其作用机理;提出基于破坏理想非完整约束的轮滑力学模型;采用终端滑模变结构与动态神经网络技术,提出轮滑状态快速鲁棒观测原理与车辆抗轮滑控制方法;建立包含车辆轮滑状态与欠驱动动态的全信息动力学模型;研究欠驱动系统的零动态本质不稳定与非最小相位特征;建立具有内动态自稳定功能的复合控制理论;提出面向多维控制目标的欠驱动两轮车平衡-跟踪分层协调控制方法。研究结果能够显著提高欠驱动两轮车的运动精度,增强其在非结构化环境下的地面适应能力。
欠驱动两轮自平衡车具有结构紧凑、转向灵活和耗能低等诸多优点,适合在复杂多变的非结构化环境中执行自主探测任务。但是受轮地两点接触方式的限制,该类车辆极易在弱附着地面上发生纵向滑转和侧向滑移。本项目针对此工程问题开展相关研究。根据李雅普诺夫稳定性理论,提出了基于运动规划的两轮自平衡车点镇定控制方法;采用拟凸优化和B样条自适应插值技术,研究了欠驱动两轮车的时间最优点镇定;应用地面力学和车辆动力学理论,揭示弱附着地面车辆轮滑效应及其作用机理;提出基于破坏理想非完整约束的轮滑力学模型;采用终端滑模变结构与动态神经网络技术,提出轮滑状态快速鲁棒观测原理与车辆抗轮滑控制方法;建立包含车辆轮滑状态与欠驱动动态的全信息动力学模型;研究欠驱动系统的零动态本质不稳定与最小相位特征;建立具有内动态自稳定功能的复合控制理论;提出面向多维控制目标的欠驱动两轮车平衡-跟踪分层协调控制方法。围绕上述研究内容,本项目发表SCI、EI检索的期刊论文27篇,论文绝大部分发表在IEEE汇刊、ASME汇刊、Nonlinear Dynamics等本领域著名期刊上;在本领域著名的国际、国内会议上发表论文12篇;申请国家发明专利17项,其中9项已授权;培养硕士研究生18人、博士研究生3人,其中11名硕士生毕业论文与本项目研究内容相关。以上理论和方法能够更好的应用于两轮自平衡车等欠驱动机电系统控制器设计中,在不增加机械结构设计制造成本的同时,显著提高该类机器人的运动效率、精度和地面适应性。该项目的研究成果能够促进欠驱动机器人推广,具有理论研究和实际应用的双重价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
一类欠驱动系统的分层递阶滑模控制方法研究
欠驱动水面船舶滑模运动控制研究
网络化欠驱动Lagrange系统的协调控制
欠驱动水面艇自主航行过程最小风险协调控制研究