Underwater adhesives have important applications in many fields, but their adhesion is inevitably degraded due to the structural damage during use. Therefore, how to restore the damaged structure and adhesion ability to improve the reliability and durability of the adhesives is one of the most important challenges in underwater adhesion. To address this issue, we design a self-healing underwater adhesive with controllable adhesion. The surface of this adhesive has a porous microstructure mimicking the suction cups of octopus foot, and the morphology of the suction cup structure can be changed in response to CO2 to control the adhesion strength between the adhesive and the underwater object; meanwhile, this adhesive also contains reversible non-covalent bonds in the system, and its macro/microstructure and adhesive ability can be self-restored automatically after damage, thereby increasing service life and reliability. On this basis, the intrinsic relationship between the composition, multi-scale structure of the adhesive and the self-healing behavior, adhesion of the underwater solid-solid interface will be revealed, and the microcosmic mechanism for underwater controllable adhesion and self-healability will be elucidated. This project can provide theory reference for designing smart underwater adhesives with controllable adhesion and long life, and the research results will have potential applications in the fields of underwater repair, marine transportation and biomedicine.
水下黏附材料在诸多领域具有重要应用,但其在使用过程中不可避免地会因结构受损而导致性能下降。如何恢复破损的结构及黏附能力,提高可靠性和耐用性已成为水下黏附材料面临的重要挑战之一。为此,本项目拟设计一种具有自修复功能的水下黏附材料。该黏附材料表面具备仿章鱼足吸盘结构,可通过CO2等刺激方式调节吸盘结构的形貌,以此调控黏附材料与水下黏附对象之间的黏附强度;同时材料含有可逆的非共价键体系,在破损后可自动恢复宏/微观结构和黏附特性,从而提高使用寿命和可靠性。在此基础之上,揭示材料的组成、多尺度结构与水下固-固界面黏附特性、自修复功能的内在联系,阐明调控水下黏附性与自修复能力的微观机制。本项目可为设计可控黏附、长寿命的智能水下黏附材料提供理论借鉴,研究成果将在水下修复、海上运输及生物医学等领域具有潜在应用前景。
提高黏附材料的耐用性是该领域面临的重要挑战之一,而引入自修复功能是解决该问题的有效方法。本项目设计并制备了含有羧基、叔氨基、氨基及苯甲醛等一种或几种官能团的自修复黏附材料。基于分子间/内氢键和可逆动态亚胺键作用,实现了黏附材料在多种环境下(空气中或液相环境中)宏观形貌、微观结构、力学性能及浸润性的自动恢复,实现了CO2等外界刺激下黏附材料对液滴(空气中)或固体物质(液体环境)黏附性的可控调节。系统研究了分子组成、分子链聚集态结构和纳米材料的微观结构等对材料自修复性能和黏附力变化的影响规律,阐明了发生自修复及可控黏附行为的微观机制。探索了功能性黏附材料在可控排杀新冠病毒及锂硫电池等领域的应用,结果有助于推进功能性黏附材料的实际应用进程。在国家基金的资助下,发表SCI收录论文5篇,获得国家发明专利2项(1项授权、1项受理)。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
神经退行性疾病发病机制的研究进展
基于改进LinkNet的寒旱区遥感图像河流识别方法
带有滑动摩擦摆支座的500 kV变压器地震响应
施用生物刺激剂对空心菜种植增效减排效应研究
具有调控细胞黏附与生长的细菌纤维素复合材料的微纳米构筑
基于自抛光涂层的自修复水下超疏油表面构建与多重自洁机制研究
自增强力致变色材料的设计合成与性能研究
仿生水下超疏油防污界面的设计制备与性能调控