Biomimic fish-scale surfaces with underwater superoleophobicity (i.e superhydrophilicity in air) are great potential in self-cleaning application underwater. Nevertheless, the currently-developed methods to set up underwater superoleophobic surfaces are too complicated and the surfaces are poor both in durability and in self-cleaning performance. In this project, microphase separated polymer coatings will be prepared by blending degradable polyurethane with hydrolysable polyacrylate while nanocomposite coatings will be fabricated by mixing degradable polyurethane with polymer-grafted SiO2 nanoparticles. Both the coatings will be further immersed into artificial seawater to in situ create both rough microstructures, such as holes, microscale aggregates, and nanoapophysis etc., and hydrophilic polymer layer by the hydrolysis and degradation of the polymer, and as a result, to obtain superoleophobic surfaces with refreshing ability. To realize the above idea, we will investigate the methods to adjust the morphologies of the polyacrylate/polyurethane microphase separated coatings and the nanocomposite coatings, as well as to monitor the evolution of the morphology and properties of the coatings in both artificial seawater and nature marine. Construction of self-repairing underwater superoleophobic coatings will be finally established based on the self-polishing resins. Besides, we will thoroughly investigated the underwater self-cleaning behavior of the obtained underwater superoleophobic surface for both single pollutes (oil, protein, mud, bacterial, and diatom) and mixed pollutes (in nature marine), in order to disclose the multi self-cleaning mechanisms, long-term self-cleaning performance and the failure mechanism of the self-polishing underwater superoelophobic coatings. All the above research results will have highly scientific significance for the design and application of biomimic marine antifouling coatings.
仿鱼鳞的水下超疏油表面在水下自洁方面有重要应用前景,但存在制备方法复杂、耐久性差、自洁性弱等问题。本项目拟基于自抛光丙烯酸树脂、聚氨酯树脂复合制备微相分离涂层,或者将自抛光树脂与纳米SiO2粒子共混制备纳米复合涂层,利用涂层表面树脂在海水中的降解和水解诱导协同生成孔洞、凸起等微结构以及亲水化聚合物层,构筑具有自我更新能力的水下超疏油表面;研究自抛光微相分离涂层和纳米复合涂层的结构调控方法,以及涂层在人工海水和实海中的结构与性能演变规律,建立涂层原始结构-诱导结构-水下疏油性关系,提出基于自抛光涂层的自修复水下超疏油表面的构建方法;考察水下超疏油表面在单一或复杂污染环境下的自洁性能,揭示自抛光型水下超疏油涂层的多重自洁机制以及长期自洁能力退化规律与机理,为长效海洋仿生防污涂层的设计制备提供科学指导。
本项目针对现有水下超疏油涂层存在的制备方法复杂、耐久性差、自洁性弱等问题出发,制备了自我更新型和梯度结构型水下超疏油涂层,研究了涂层的防污性能及其不同机制的协同效应。具体如下:.自由基共聚合合成了具有海水响应的PTM聚合物,用于纳米SiO2粒子改性。将PTM-SiO2与自抛光树脂(SP)复合,当PTM-SiO2含量超过20%后,涂层经海水浸泡后可获得零粘附力的水下超疏油表面,且在表面磨损后,能够自我修复。该涂层还具有优于纯SP和SP/SiO2涂层的防蛋白质黏附性,表明PTM改性有利于提高涂层的防污性能。实海挂板实验显示,防污性能与水下超疏油特性之间没有存在对应关系。.将自制的自抛光聚合物与季铵盐硅烷偶联剂改性的纳米SiO2(QAS-SiO2)复合,固化后制备了涂层。该涂层经人工海水浸泡后,可生成水下超疏油表面,并具有自我更新能力,对希瓦氏菌具有很好的杀菌和抗菌黏附效果,且QAS-SiO2与自抛光速率存在防污协同效应。涂层在海洋中的抗菌性与实验室结果类似。该涂层实海时效较短,这是由于不能完全阻止细菌粘附,生物膜逐渐形成,原有化学和物理特性丧失。.通过PVA/SiO2纳米复合涂层浸入戊二醛水溶液中交联,获得了在厚度方向具有梯度结构的水下超疏油涂层。基于该方法,涂层中纳米SiO2粒子低至15%,仍有水下超疏油特性,且力学性能良好,透明性高,对原油有良好的自洁能力。而共混法涂层只有纳米SiO2含量高达50%时,才能形成水下超疏油表面,力学性能弱,透明性低。进一步发展了一种“超声分散+浸渍固化”相结合的工艺,获得了具有增透、防雾、自清洁、水下防污等多重功能纳米复合涂层。.另外,还设计合成了两种新型分散剂,即质子化的多氨基苝酰亚胺(HAPBI-3)和含硅羟基的对苯二胺共轭阳离子(TSiPD•+)。成功用于制备磺化聚苯乙烯基导电复合材料和导电棉纤维织物涂层。
{{i.achievement_title}}
数据更新时间:2023-05-31
农超对接模式中利益分配问题研究
三级硅基填料的构筑及其对牙科复合树脂性能的影响
内质网应激在抗肿瘤治疗中的作用及研究进展
家畜圈舍粪尿表层酸化对氨气排放的影响
铁酸锌的制备及光催化作用研究现状
基于多臂核壳微凝胶球水下超疏油防污涂层的构建及其多重自修复机理研究
基于CVD含氟聚合物镀层的超疏油自清洁表面研究
超疏水自洁聚合物表面涂层材料的制备、结构及功能化特性
超疏水自洁含氟聚合物表面涂层材料的制备、结构及功能化特性