During the finishing Youth Fund Project entitled “Fatigue Resistant Designing and Fabricating of Bionic Coupling Brake Discs used for Rail-bound Vehicles based on Biological Crack-arrest Function”, some initial achievements have been gotten by the applicants. The mechanical mechanism for strengthening and toughening the bionic coupling brake disc surface that characterized by laser processed morphology and structure has been revealed, and the influencing laws of fatigue loading on the bionic surface have been gained. Meanwhile, the design principles and schemes for the bionic anti-fatigue brake disc were proposed, and furthermore their thermal fatigue resistance was assessed by the computer simulation technique. Aiming to different needs of brake disc, several manufacturing techniques with independent intellectual property have been developed intending to form the ideal bionic coupling units. As a result of the above studies, the applicants won the first prize of technical invention award of Jilin Province for one times. They published 9 academic papers in which 7 were indexed in SCI and 2 in EI, and also 4 national invention patents were declared. To further breakthrough and solve the key, bottleneck and basic scientific problems left over from the Youth Fund project, applicants will further make deep explorations around the theme “Multiscale Mechanical Mechanism of Rigidity-flexibility Coupling Surface of the Typical Organisms with Anti-wear and Crack-arrest Functions” in this proposal application. By combining the rigidity-flexibility coupling analysis with the mechanics research, the macroscopic and microscopic sizes with the nanometer scale, the dynamic measuring with the static analysis, this study will make an effective attempt to discover the realizing mode of anti-wear and crack-arrest functions of typical biology, and further reveal their internal mechanic mechanism. According to the above, the universal mechanical models of rigidity-flexibility coupling surface relating to the anti-wear and crack-arrest functions are expected to be established. The goal of this research is to provide a force support for the precise control of the bionic design and manufacturing in the future.
申请人在前期承担的青年基金项目“基于生物止裂功能的轨道车辆制动盘仿生耦合抗疲劳设计与制备”研究中取得初步进展,揭示了激光制备形态、结构二元耦合仿生止裂制动盘材料的力学强韧化机制及疲劳载荷对其影响规律,提出了制动盘仿生抗疲劳设计的准则及方案并进行了计算机模拟,开发了多种具有自主知识产权、面向不同制动盘需求的仿生耦合体制备技术。获吉林省技术发明一等奖1项;申报国家发明专利4件;发表学术论文9篇,其中SCI收录7篇,EI收录2篇。围绕“典型生物耐磨、止裂刚柔耦合表面的多尺度力学机制”这一基础、关键、瓶颈科学问题,申请人拟进一步进行重点突破与深入探索,将刚柔耦合与力学研究相结合,宏观与微观、纳观尺度相结合,动态与静态分析相结合,寻求典型生物耐磨与止裂功能的实现模式,揭示其内在力学机制,提出耐磨、止裂生物体刚柔耦合的普适性力学模型,为进一步仿生设计与制造的精确控制提供强力支撑。
生物功能实现不仅源自单一因素的作用,而更多源自多种因素通过适当机制的耦合、协同作用。而学习和模拟生物耦合机制的多元耦合仿生,较之仅学习和模拟影响生物功能某一因素的单元仿生,更接近生物的功能原理,将会产生更好的仿生效能。本项目将刚柔耦合与力学研究相结合,宏观与微观、纳观尺度相结合,动态与静态分析相结合,揭示了典型生物耐磨与止裂功能的实现模式和内在力学机制,提出了耐磨、止裂生物体刚柔耦合的普适性力学模型,为仿生设计、制造应用提供支撑,取得了如下创新成果:.(1)通过宏观/微观几何形态、结构组成和生物材料属性等多尺度分析,建立了生物体刚柔耦元与其运动姿态、方式的关联,揭示了典型刚柔耦合生物的几何、形态等对其耐磨与止裂性能的特征规律。.(2)通过对典型生物体刚柔耦元结构进行显微/纳米硬度、弹性模量、拉伸强度和Micro-CT等分析,定量研究了生物体不同耦元及其耦合整体的力学特性,阐释了生物刚柔耦合表面的功能实现模式。.(3)通过对生物体刚柔耦合表面局部和整体的力学性能及止裂、抗冲击和抗疲劳特性分析,建立了刚性和柔性耦元结构与功能特性的对应规律,揭示了刚柔耦合的生物体结构所具有的耐磨与止裂的功能原理。.(4)基于生物体刚柔耦合形态、结构和性能分析以及刚柔耦合生物体耐磨与止裂的功能原理,建立了仿生、数学和力学一体化模型,并在实际问题中研究了耦元的作用主次、强弱、比例关系对整体力学性能影响,为进一步实现刚柔耦合人工材料的仿生设计与制造奠定了基础。.依托本项目研究,负责人获2014年度中国农业机械学会第四届青年科技奖、2016年度吉林省青年科技奖和2017年度吉林省青年拔尖人才;执行期内发表学术论文15篇,其中SCI收录13篇,EI收录2篇;授权国家发明专利4件;带领团队入选2017年度吉林省中青年领军人才及创新团队;成员1人获国家留学基金委“中国未来科学家”称号;培养研究生7人;参加国际会议12人次,全面完成了项目的预期研究工作。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于多模态信息特征融合的犯罪预测算法研究
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
典型生物止裂、抗疲劳功能特性的多因素耦合机理与规律研究
牙釉质止裂机理的力学实验技术研究
裂隙岩石热-水-力耦合损伤断裂与止裂研究
基于生物止裂功能的轨道车辆制动盘仿生耦合抗疲劳设计与制备