For the high-speed, high maneuvering and stealthy target detection via modern radar in a complicated electromagnetic surrounding, this project put forward a novel approach for radar signal processing, called Space-Time-Frequency Focus-Before-Detection (STF-FBD), based on long-time coherent integration. The proposed STF-FBD methods can effectively suppress the strong clutter and active jamming based on the space-time-frequency signal modeling, as well as overcome the problems like scale effect, aperture fill time, sparse frequency sub-band synthesis, across range units, across Doppler units and across beam units. The proposed STF-FBD methods can remarkably improve the radar signal processing performance on the steps like hybrid integration, target detection, parameter estimation, maneuvering tracking, feature extraction and target recognition. The proposed STF-FBD methods can outperform the existing track-before-detection (TBD) methods on the processing performance and establish a unified radar signal processing frame based on STF-FBD and STF-FBD-TBD processing. In the mean time, the fast implementations of STF-FBD algorithm will be proposed and a general simulation platform will be established in this project, which will demonstrate the effectiveness and fasten the applications of the proposed STF-FBD methods. The proposed methods are not only suitable for high-speed, high maneuvering and stealthy target but also applicable for conventional radar targets. The fruits obtained in this project can not only be adopted by new-generation modern radar but also used by conventional radar, which can satisfy the high-performance processing needs on different radar application fields like searching, reconnaissance, guidance, tracking and navigation.
针对复杂电磁环境中现代雷达对高速、高机动、隐身目标探测的迫切需求,本项目基于空时频域信号建模,提出基于长时间相参积累的空时频检测前聚焦(STF-FBD)新理论和新方法。STF-FBD可有效抑制强杂波和有源干扰,克服尺度伸缩、孔径渡越、稀疏子带、跨距离、跨多普勒和跨波束等效应,显著提高混合积累、目标检测、参数测量、机动跟踪、特征提取和目标识别等信号处理环节的性能。相对现有检测前跟踪(TBD)方法,STF-FBD通过长时间相参积累技术可取得更优越性能,并形成基于STF-FBD和STF-FBD-TBD方法统一的雷达信号处理理论框架和技术体系。同时,本项目将提出STF-FBD快速算法并研制通用仿真平台,为STF-FBD新方法工程应用奠定基础。本项目研究成果不仅适于高速、高机动、隐身目标也适于常规目标,不仅适于新体制雷达也适于常规雷达,满足搜索、警戒、制导、跟踪、引导等雷达应用领域的需求。
针对现代雷达对复杂环境中高速、高机动、隐身目标探测迫切需求,本项目基于空时频域信号建模,提出空时频检测前聚焦(STF-FBD)新理论和新方法。STF-FBD 可有效抑制杂波和干扰,克服尺度伸缩、孔径渡越、稀疏子带、跨距离、跨多普勒和跨波束等效应,显著提高目标检测、参数测量、机动跟踪等环节的性能。相对现有检测前跟踪方法,STF-FBD通过长时间相参积累可取得更优性能,并形成基于 STF-FBD 和 STF-FBD-TBD 统一的雷达信号处理理论框架和体系。同时,本项目提出 STF-FBD 快速算法,为工程应用奠定基础。本项目研究成果不仅适于高速、高机动、隐身目标也适于常规目标,不仅适于新体制雷达也适于常规雷达。围绕本项目研究内容,本项目在“IEEE Transaction on Signal Processing”、 “IEEE Transaction on Aerospace and Electronic System”、 “IEEE Geoscience and Remote Sensing Letter” 、“IET Proceeding of Radar Sonar and Navigation”、 “Electronic Letter”、“Science China: Information Sciences”等国内外重要学术期刊和会议发表高水平论文46篇,其中SCI收录17篇,EI收录27篇。申报国家和国防发明专利31项,其中已授权8项。培养博士后2名,研究生21名(其中硕士13名,博士8名)。与立项研究目标和内容相比,本项目已显著超额地完成了研究任务。相关学术文章在2013年“IET Radar Conference 2013”等国内外重要学术会上荣获优秀论文奖。鉴于团队“检测前聚焦”领域的丰硕成果,项目负责人2015年IET国际雷达会议(IRC2015)获邀做大会报告(Plenary Speech);2016年布尔班应用科学与技术国际会议获邀做特邀报告(Invited Talk);2016年IEEE 雷达会议(Radar’2016)和2017年IEEE 国际雷达会议(RadarCon’2017)获邀做大会学术讲座(Tutorial)。本项目为新体制雷达高速高机动目标探测的关键技术奠定了理论和技术基础,具有重要的学术理论价值和广阔的工程应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
基于全模式全聚焦方法的裂纹超声成像定量检测
基于图卷积网络的归纳式微博谣言检测新方法
一种改进的多目标正余弦优化算法
频率分集阵列雷达空时距信号处理方法研究
基于时-相和时-空关系的时频处理与测量研究
宽带多孔径雷达空时频成像技术
低截获概率信号的空时频联合检测与参数估计方法研究