Controlling of dyanmic wettability by the material interfaces,has become a hot research focus, which plays a significant role in liquid-drop driving, microfluidic controlling, fresh water collection and so on. In this project, based on biological surfaces (e.g.,beetle back, spider silk, plant leaf) with liquid-transport and collection and the mechanism of micro/nanostructure cooperation effects, we intent to throughbreak the previous design on gradient interfaces and surface materials. By designing in the main route of biological gradient features, and using the normal macromolecule or functional macromolecule materials, we fabricate the unique multi-level micro-/nanostructure composite interface materials by investigating the novel physical chemistry method and technology so as to biomimetic the biological micro-/nanosturcture features. In the viewpoint of biomimetic reaserches, we will design optimally the multi-geadient interfaces, such as chemistry component / roughness / geometry / step-structure and so on, so as to fully play the role of multi-gradient feature cooperature. We investigate the relationship of anisotropic adhesion and multi-gradient cooperation, so as to realize the quick respond to liquid drop driving,and controlling of directional transportation, so that we will throughbreak the limitation of small size driving. We will design the biomimetic interface materials from one-dimensional level to two-dimensional level, so that we investigate the mechanism of multi-level gradient driving effect for liquid drops. Especailly, we study biomimetic multi-level structure and multi-dimensional interface system that can drive fast the tiny drop at the micro-scale size. We not only investigate the control of micro-drop transport in direction by the effective cooperation of gradient parameters (e.g.,chemistry, roughness, geometry, curvature and so on) on as-designed interfaces above. We but also further design the responsive-controlled (e.g.,temperature, humidity, light, electrocity and so on) gradient micro-/nanostructure interfaces, so that we control the gradient-driven stability for the fast movement,the directional transport,and the high efficient collection from tiny liquid-drop to larger liquid-drop. The mechanism of transport and collection for tiny liquid drop is modelled based on the multi-gradient cooperative effect herein. By the systemic investigation above in this project, we hope to obtain a series of functional materials with novel biomimetic multi-gradient interfaces to control the liquid driving,liquid dynamic transport and water collection in high efficiency.
以仿生界面材料为载体的液滴动态行为调控已成为智能化浸润性研究热点,在液滴驱动、微流传输、淡水采集等方面发挥重要作用。本项目基于生物表面(如昆虫羽翅、蜘蛛丝、植物叶等)的液滴驱动与集水效应机制,拟突破现有表面/界面材料研究的局限性,以生物梯度特征为设计主线,以通用高分子/功能高分子材料为主体,筑造多层次微纳米复合结构仿生界面材料,拟探究其可控制备的新技术与方法。从仿生角度出发,优化设计多梯度(化学组分/粗糙/几何/曲率/阶梯等)界面,发挥多梯度特征的协同作用。探究界面各向异性粘滞特征与多梯度协同的关系,实现微小尺度液滴快速响应、动态传输调控,突破小尺度驱动限定性。拟设计从一维到二维的仿生界面材料,探究多尺度梯度驱动液滴效应的机制。研究外场响应(如湿度、温度、光等)梯度协同调控动态浸润性、以及液滴方向传输、快速驱动和高效聚集等功能特性。建立新型的仿生多梯度界面材料与液滴动态、高效传输功能体系。
本项目围绕生物界面(蜘蛛丝,仙人掌针刺,甲壳虫羽翅,蝴蝶翅膀等)的微纳米多层次梯度特征的仿生设计为研究主线,以通用高分子/功能高分子材料或其复合材料为主体,通过交叉物理化学及纳米技术方法,创造性地构筑了从一维到二维的多层次微纳米复合结构多梯度(化学组分/粗糙/几何/曲率等)静态/动态界面体系。通过构筑静态多梯度界面体系,探索了多梯度协同对液滴动态传输集聚的调控。通过构筑外场响应(如湿度、磁场、温度、光等)的动态梯度界面,探索了动/静态多梯度协同作用液滴动态传输聚集的调控。其研究具有创新性及科学意义:(1)通过研究多梯度协同界面在高效液滴传输能力的调控,为新型界面体系在集水材料上的应用研究提供基础;(2)通过研究微纳米结构的梯度效应在低温状态下的液滴动态聚集行为,为多结构梯度界面在防覆冰材料上的应用研究提供价值的参考;(3)通过研究多梯度界面对液滴驱动的调控,为设计梯度界面在液滴高效传输特性的调控提供基础。上述研究结果,发表SCI论文47篇,撰写英文专著1部,授权专利9项。受邀学术报告10次以上。2016年度获得了国际仿生工程学会突出贡献个人奖以及国际先进材料学会杰出贡献个人奖牌。培养博士生7人,硕士生13人。优秀博士生1人,优秀硕士生2人。项目组成员晋升副教授2人。2016年被中国复合材料学会推荐参加中国科协主办的军民融合科技创新展1次。法国电力集团国际合作协议1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于图卷积网络的归纳式微博谣言检测新方法
仿生多梯度特殊浸润性表面构筑及微液滴可控驱动研究
电场作用下微纳液滴在固体壁面的润湿机理及动态特性
纳米流体微液滴砂轮/工件约束界面动态毛细管形成机制与微液滴迁移成膜机理
微米液滴冲击微纳米结构表面的流动与传热机理研究