As an advanced micro-droplet control technology with highly efficient, electrowetting is the key method to solve the problem that device life is seriously damaged due to mechanical friction with the miniaturization development of electronic device. According to the complex electrowetting phenomenon in the micro-nano electronic devices, theoretical analysis, molecular dynamics simulation and experimental verification method are applied to study collaborative scientific problems from the microscopic angle. There are the effect of alternating electric field on the droplet dynamic wetting characteristic, droplet microstructure and coupling dynamics behavior of the solid-liquid interface and driving mechanism of surface wetting gradient and electric field on the droplet. This project focuses on exploring the regulatory mechanism of surface polarity, wetting the gradient, and the microstructure on the wetting process and equilibrium of droplet in the present of electric field. It will provide theoretical support to explain the contact angle saturation in electroertting. On the other hand, further research will be carried out on the effect of electric field characteristics, such as the direction and polarity of direct electric field and the waveform and frequency of alternating electric field on droplet internal microscopic structure, the influence law of gas solid liquid interface dynamics behavior. And then the micro mechanism of the alternating electric field decrease the contact Angle hysteresis will be cleared. The project shows the intercross and coalescence among the multi-subjects. The achievements of this project will promote the basic theory system of the electrowetting and the miniaturization development of China micro/nano electronic device.
电润湿作为先进高效的微流体操控技术,有效解决了电子器件微型化发展过程中由于机械摩擦造成器件寿命严重受损的问题。本项目针对微纳电子器件中复杂工况下的电润湿现象,采用理论分析、分子动力学模拟及实验验证等方法,从微观角度研究交变电场对液滴动态润湿特性的影响规律、液滴微观结构与固液界面的耦合动力学行为、壁面润湿梯度与外电场对液滴的协同驱动机制等科学问题。本项目一方面重点探索电场作用下壁面极性、润湿梯度、微观形貌等对微纳液滴润湿过程及平衡状态的调控机制,为解释电润湿接触角饱和现象提供理论支撑;另一方面深入研究直流电场方向与极性、交流电场波形与频率以及非周期交变电场等电场特性对液滴内部微观结构、固液气界面动力学行为的影响规律,进而明确交变电场减小接触角滞后的微观机理。本项目体现了多学科的交叉融合,其成果将丰富电润湿基础理论体系,推动我国微纳米电子器件微型化发展。
电润湿作为先进高效的微流体操控技术,有效解决了电子器件微型化发展过程中由于机械摩擦造成器件寿命严重受损的问题。本项目针对微纳电子器件中复杂工况下的电润湿现象,采用理论分析、分子动力学方法研究液滴微观结构与固液界面的耦合动力学行为、交变电场对液滴动态润湿特性的影响规律等科学问题。本项目主要完成微纳液滴在极性、非极性壁面上的润湿及电润湿特性及机理分析;多种粗糙形状及粗糙因子壁面对润湿及电润湿特性的影响规律及机理;离子液体液滴在不同极性电场作用下呈现非对称性电润湿的机理;电场作用下纳米液滴在受限空间内的回滞现象及机理分析;微纳液滴在电场作用下的聚并、分离规律及机理。研究成果从微观角度揭示了电场作用下不同微纳液滴在复杂情况下呈现的动态润湿规律及形成机理。为电润湿在微纳电子器件中的应用提供理论基础。项目资助共完成SCI/EI收录学术论文15篇,培养硕士研究生4名。执行期内共参加基金委组织的学术年会及青年论文坛5次。项目共投入直接研究经费20万元,已支出18.43万元,剩余1.57万余,计划用于后续的研究支出。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
基于图卷积网络的归纳式微博谣言检测新方法
电场作用下多组分微纳液滴界面输运特性及强化传热机理
静电场作用下液滴在水稻叶面的行为特性研究
离散微液滴在导电非均匀润湿性表面的热物理特性研究
黏性液滴冲击散粒体壁面的运动机理研究