In the project, the high standard pixel-level optical integrated vanadium oxide (VOx) infrared (IR) detector chips will be developed by solving the problems such as low absorption rate and large noise equivalent temperature difference, to meet the urgent needs of high-performance uncooled IR detector in the fields of military, industrial, transportation, security monitoring, meteorological, environmental, medical etc.. Some critical scientific problems will be resolved, including the design and pixel integration of high IR absorption subwavelength structures, photo-thermal conversion and the distributions of heat, non uniformity correction and compensation for the pixels. After which, some key technologies such as breakthrough of the key bottleneck technologies for uncooled IR detector manufacturing, broad band and multi-band spectral responses, and pixel-level composite structures with polarization dependency, will be raveled out. Finally, the prototype of MEMS uncooled IR detector will be accomplished with focal plane arrays (FPA) up to 320×240 pixels, noise equivalent temperature difference less than 20mK, and frame rate more than 60Hz.Which will obtain a series of achievement with intellectual property rights. The theoretical and technical researches of high performance uncooled IR detection chips based on plasmonic technology will promote the rapid development of new-type uncooled IR detection chips with broad band multi-color and polarization integration, and extent its utilization to long wavelength and terahertz band. It provided a steady base in theory and technology for localization and widely application of high performance uncooled IR detection chips.
本项目针对非制冷红外探测器红外吸收率低、噪声等效温差大等瓶颈问题,拟研制高性能的像元级近场光调控集成非制冷氧化钒(VOx)红外探测器芯片,以满足军事、工业、交通、安防等诸多领域的迫切需求。通过解决探测器局域表面等离激元叠层增强吸收结构的设计及像元级集成、光热转换及热力学分布、像元的非均匀校正与补偿等关键科学问题,实现高性能非制冷红外探测器的宽光谱范围、多波段响应、或偏振像元级集成探测,突破其制作瓶颈工艺等关键技术,完成焦平面阵列为320×240、噪声等效温差小于20mK、帧频超过60Hz的非制冷红外探测器原理演示样品,获得具有自主知识产权的成果。基于局域表面等离激元增强吸收技术的高性能非制冷氧化钒红外探测芯片理论和技术的研究将促进新型宽谱、多色或偏振集成红外探测芯片的快速发展,同时可将探测延伸到甚长波或太赫兹波段,为实现高性能非制冷红外探测器芯片国产化和广泛应用奠定坚实理论和技术基础。
高性能非制冷红外探测器在军事、工业、交通、安防等诸多领域有迫切的需求,为解决传统探测器红外吸收率低、噪声等效温差大等难题,采用局域表面等离激元增强吸收技术实现高性能非制冷氧化钒红外探测芯片。项目通过解决探测器局域表面等离激元叠层增强吸收结构的设计及像元级集成、光热转换及热力学分布、像元的非均匀校正与补偿等问题,实现高性能非制冷红外探测器的宽光谱范围、多波段响应、或偏振像元级集成探测,突破其制作瓶颈工艺等关键技术,完成焦平面阵列为384×288、噪声等效温差17.93mK的非制冷红外探测器样品。提出了长波红外宽带增强吸收结构,利用谐振器的局域表面等离激元共振、传播表面等离激元共振及其组合效应、多种谐振模式,设计实现了长波红外宽带、偏振角和入射角不敏感的完美吸收,提出了长波红外本征吸收介质材料和超材料吸波体结合实现宽带吸收的一般策略。提出基于双层介质的超材料Ti/Si/SiO2/Ti甚长波红外宽带吸收器结构,分别实现在14~30μm和8~30μm的超宽带吸收,为长波红外、甚长波红外、多波段红外成像等应用提供经济和紧凑的新方案。研制出表面等离激元增强吸收器并像元级集成于非制冷红外探测器,在长波红外8-14μm范围测得的平均吸收率为92%,噪声等效温差NETD为17.93mk,像元尺寸:24.02μm ;阵列规模:384×288,为研制大面阵焦平面、突破带宽限制、多色、偏振等功能集成探测器提供方法和技术支撑。提出基于薄膜体声波谐振器(FBAR)和超材料吸收器的非制冷红外传感器,响应率提高了50%,实现高灵敏度(1.65 kHz/(μW/mm2))和高分辨率探测(NEP∼ 0.2nW/Hz1/2,NETD∼ 5.5mK)。本项目已完成了项目计划书的研究内容,授权国家发明专利13项,受理10项;发表学术论文27篇,其中SCI检索27篇;培养博士、硕士研究生20名。本项目研制的像元级近场光调控集成非制冷红外探测器芯片能为第四代红外探测器提供理论和实验基础,为研制大面阵焦平面、突破带宽限制、多色等功能集成探测器提供方法和技术支撑。该芯片的结构及制作方法具有自主知识产权,并具有广阔的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于细粒度词表示的命名实体识别研究
偏振集成中红外探测器近场调控抑制邻近像元响应串扰研究
集成微纳光学结构的非制冷中远红外石墨烯探测器研究
3-5μm非制冷锑化物半导体光伏红外探测器件研究
新型非制冷中波红外带间级联探测器研究