The electric vehicle has became the research hot point for its energy saving, environmental friendly and high controllability. Compared with the conventional vehicle, there are more electronic control unit in four-wheel driven electric vehicle , which would lead to potential conflict. Focus on the intelligent dynamic coordination control and energy optimization management of chassis system, the intelligent coordination control scheme is constructed by multi-Agent based hierarchical module with open architecture and upward compatibly. The research contents of this project can be divided into 6 parts. To begin with, the model sets about the chassis control system of four wheel independent driven pure electric vehicle, which have several uncertainties such as the indeterminacy of entire vehicle mass and tire cornering stiffness, is built. Then, the dynamic coordination control framework about the chassis control system based on multi-Agent is constructed. In order to eliminate the influence of uncertainties, the method of multi-state-parameter estimation and corresponding control is also studied. As the energy conservation is more significance to pure electric vehicle, the energy management system about chassis control system, which is formed in multi-Agent control framework to realize the global energy optimization, is developed. To obtain the best control performance and carry out the pre-research of international standard architecture for intelligent dynamic coordination control, which will possibility appear in the future, the integrated dynamic coordination control standard about the whole chassis control system involving the dynamic control and energy management is established. Finally, with the purpose of verifying the proposed control system, a test platform of multi-Agent based intelligent coordination control for the four wheel independent driven pure electric vehicle chassis system, incorporating the hardware and software, is set up. The suggested multi-Agent based vehicle coordination control architecture is strongly capable of modular expansion, which enable the interconnection between the chassis control system and various vehicle intelligent control algorithm.
电动汽车因具有节能、环保、可控性高的优势,已成为汽车领域研究的热点。与传统汽车相比,四轮驱动电动汽车底盘控制系统拥有更多的电控单元,子控制系统之间容易产生冲突。因此,本申请将四轮驱动纯电动汽车底盘智能协调控制和能量优化管理作为研究方向。构造具有多种不确定性特征的底盘系统模型集;搭建基于多Agent的底盘智能动态协调控制架构;研究底盘系统多状态参数估计及控制方法;设计基于多Agent的电动汽车底盘全局能量最优协调控制系统;建立底盘系统和能量管理系统的控制标准体系,为未来可能出现的智能动态协调控制的国际标准架构进行预研;搭建基于多Agent的底盘系统智能协调控制平台,包括硬件系统平台和控制软件环境。由于基于多Agent的车辆协调控制架构具有较强的模块化扩展能力,可使四轮驱动电动汽车底盘控制系统与各种车辆智能控制实现对接,为后续的车辆无人化、智能化研究打下基础。
本项目以四轮独立驱动电动汽车为研究对象,建立了基于多智能体的电动底盘智能协调控制架构,设计了整车协调决策机制,解决了多控制主体之间的功能冲突和干涉问题,同时增强了系统的可扩展性。为了保证Agent个体之间实时有效地交互,在充分考虑外部噪声和系统时滞的基础上,建立了表征时变行驶工况的车辆交互多模型集,完成了车辆参数与状态估计方法的设计。将整体的估计精度提高了10%,抑制了CAN网络时滞以及外部环境噪声对估计性能的影响。针对复杂混合工况下,Agent个体之间存在的控制目标冲突耦合问题,设计了智能底盘协调机制。提出了层次化鲁棒T-S模糊协调控制策略,改善了汽车横向稳定性和轨迹跟踪性能,将横摆角速度的跟踪精度提高了18%。同时通过直接横摆力矩控制调节轮胎纵向力,最大限度提高了车辆抗侧倾能力。高效底盘控制实现的前提是能量系统为各执行机构提供必要的能量。在所建立的多Agent能量管理系统的技术框架下,研究了复合储能系统能量管理策略,提出了多轮毂电机能量流优化动力分配控制方法,将电池寿命提高44%,同时节约了6.6%的电驱动系统能量消耗。形成了经济性、制动安全性和操纵稳定性多目标协同的底盘优化控制技术,有效解决了四轮驱动电动汽车能量管理的多源优化与系统协调问题。联合奇瑞新能源公司,基于M1AEV车型开发了四轮独立驱动电动汽车实验测试平台,完成了从PD18轮毂电机、高低压电气架构到整车的硬件集成。重构了整车的CAN网络架构和信号语义,实现了Agent节点之间的交互与通讯。根据汽车控制系统的V流程开发模式,设计基于多Agent系统的整车控制软件架构,完成了控制软件的建模评估和集成测试。实验表明,整车的动力性、经济型和安全性得到了显著的提升。在完成原有计划的基础上,结合当前国际最新的研究发展动向,拓展了部分内容,展开更深入的基础理论和应用基础研究。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
黄河流域水资源利用时空演变特征及驱动要素
拥堵路网交通流均衡分配模型
四轮驱动电动汽车底盘系统动态协调控制机制与能量优化管理
基于分层动态优化控制的纯电动汽车复合能源动力系统能量管理策略研究
电动汽车机电飞轮混动系统能量优化管理与状态切换协调控制
基于能量平衡的纯电动汽车驱动系统建模与效率优化控制