This project considers fault-tolerant guaranteed cost and H-infinity controls of switched systems with structural uncertainties which exist in system matrices and input matrices. First of all, the fault model, which can also represent partial faults, will be defined, and the definitions of fault-tolerant guaranteed cost and H-infinity controls for switched systems will be also given. Secondly, by using the multiple Lyapunov function method, fault-tolerant guaranteed cost and H-infinity controllers and state-dependent switching policies will be proposed for switched linear systems. Thirdly, the two results of the switched linear systems will be extended to the switched cascade nonlinear systems, respectively. Finally, the theoretical results for the switched nonlinear systems will be applied to current presetting models of production process of fused magnesium to verify their effectiveness.
本项目研究具有系统矩阵和输入矩阵均存在结构不确定性的切换系统的容错保成本和容错H无穷控制问题。首先定义可以部分失效的故障模型和切换系统的容错保成本和容错H无穷控制问题。其次,利用多李雅普诺夫函数方法设计依赖于状态的切换策略来实现线性切换系统的保成本和H无穷控制。然后,将这两个结果扩展到非线性级联切换系统解决其对应的容错保成本和容错H无穷控制问题。最后将非线性切换系统的理论结果应用于电熔镁生产过程中的电流预设定模型上来验证所提理论的有效性。
本项目已研究具有系统矩阵和输入矩阵均存在结构不确定性的切换系统的容错保成本和容错H无穷控制问题。首先定义了可以部分失效的故障模型和切换系统的容错保成本和容错H无穷控制问题。其次,利用多李雅普诺夫函数方法设计了依赖于状态的切换策略并实现线性切换系统的保成本和H无穷控制。最后,已将这两个结果扩展到非线性级联切换系统解决其对应的容错保成本和容错H无穷控制问题。在执行项目的三年期间,项目组分别在自动化领域国际顶级期刊IEEE Trans. on Industrial Electronics和 Neurocomputing上共发表论文2篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
卫生系统韧性研究概况及其展望
切换模糊系统的故障估计与容错控制
线性切换系统的容错控制理论与方法研究
基于切换策略的鲁棒容错控制系统优化设计
H∞结构容错控制理论及试验研究