Previous investigations have revealed that the main reason for wind-induced train accidents is unsteady wind, which is also named shear wind, referring to a kind of air flow phenomenon with sudden change in wind velocity and direction. The complicated aerodynamic interference and dynamic interaction between lightweight train with high running speed and bridge, which accounts for more than 50% of high-speed railway in China, further increase the operation risk of train running on bridge under unsteady wind. However, due to the limitations of existing examination techniques and analysis methods, there are few researches related to the effects of unsteady wind on the operation safety of train on bridge. The present project focuses on the aerodynamic characteristics of high speed train-bridge system and train operation safety under unsteady wind, which will be investigated using wind tunnel tests and simulation analysis. Firstly, aerodynamic forces testing techniques for train-bridge system under unsteady wind and analysis methods for non-stationary characteristics of aerodynamic forces will be proposed. Consequently, the aerodynamic forces of train-bridge system in unsteady wind can be measured for both still and moving vehicle model wind tunnel tests, and the aerodynamic interference between vehicle and bridge can be analyzed. Secondly, a coupling vibration analysis method for non-stationary wind-train-bridge system based on multi-body system dynamics will be established. A large number of simulations can be conducted, so that the aerodynamic evaluation parameters and technical basis about train operation safety under unsteady wind can be concluded. The present subject, aiming at the wind-resistant research about high-speed train-bridge system, is closely related to the construction and development of China's high-speed railway, and has significant theoretical and practical importance.
已有列车事故表明突风是风致列车事故发生的主要原因,高速运行的轻量化列车与桥梁(占我国高铁里程50%以上)之间复杂的气动干扰和动力相互作用则进一步增加突风下高速列车安全运行的风险。然而,由于现有试验技术和分析方法的不足,有关突风对桥上列车运行安全影响的研究较少。本项目以风洞试验和仿真分析为主要研究手段,集中关注突风下高速列车-桥梁气动特性及其对安全行车的影响。主要包括:1)提出突风下车-桥系统气动力测试技术及其非平稳特性的分析方法,开展列车静、动态时车-桥系统气动特性风洞试验,探究突风下车桥间及列车交会时的相互气动干扰;2)建立基于多体系统动力学的非平稳风-车-桥耦合振动精细化分析方法,通过大量的仿真计算,提出突风作用下桥上高速列车安全运行的气动评价指标和技术依据。课题研究紧密结合我国高速铁路建设和发展,针对高速列车-桥梁系统的抗风基础性问题进行研究,具有重要的理论意义和工程应用价值。
突风也称切变风,是指气流运动速度和方向突然变化的一种气流现象。已有列车事故表明突风是风致列车事故发生的主要原因,高速运行的轻量化列车与桥梁(占我国高铁里程50%以上)之间复杂的气动干扰和动力相互作用则进一步增加突风下高速列车安全运行的风险。然而,由于现有试验技术和分析方法的不足,有关突风对桥上列车运行安全影响的研究较少。本项目以风洞试验和仿真分析为主要研究手段,集中关注突风下高速列车-桥梁气动特性及其对行车安全的影响。取得主要成果有:.(1)研发了常规风洞中突风的发生装置,首次研究了突风对车桥系统气动特性的影响;建立了车-桥系统三维CFD数值仿真模型,发展滑移网格技术,实现横风下移动列车-桥梁系统气动特性的数值模拟。.(2)理论上证实了列车在横风下受到的气动力最大,明确了车-桥系统气动特性研究应考虑的风向角,并提出了基于多体动力学和有限元的风-车-桥系统动力响应联合分析的时域方法,拓展了风-车-桥耦合振动分析研究领域。.(3)研发了百叶窗型、合页型和耗能型等新型风屏障形式,揭示风屏障参数对桥上列车气动特性的影响机理和车桥耦合振动响应的影响规律;首次通过实测获得CRH380A列车风作用下风屏障风荷,揭示列车风作用下风屏障风荷载时频特性。.课题执行期内发表标注课题资助编号的各类学术论文23篇(其中SCI/EI收录13篇),授权国家专利9项,出版学术专著1部;研究成果获中国铁道学会评价为整体国际先进,部分国际领先,并获2017年度湖南省科技进步一等奖(排名5/12)、2017年中国铁道学会铁道科技特等奖(排名11/40)和2018年度中国铁道学会铁道科技一等奖(排名2/20,已公示)各1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
强侧风对高速列车外流场瞬态气动特性及行车安全性影响研究
侧风作用下高速铁路列车-桥梁系统气动耦合作用机理与安全控制方法研究
多动力源作用下高速列车-轨道-桥梁系统随机振动分析与行车安全准则
复杂风场条件下高速铁路桥梁风屏障气动效应及列车运行安全性研究