环上离散动力系统的周期问题研究

基本信息
批准号:11801104
项目类别:青年科学基金项目
资助金额:21.00
负责人:邓贵新
学科分类:
依托单位:南宁师范大学
批准年份:2018
结题年份:2021
起止时间:2019-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:陈蔚凝,朱灵,徐合燕,张帆
关键词:
离散动力系统周期有限环
结项摘要

A discrete dynamical system consists of a nonempty set X with some additional algebraic structure and a function f from X into itself. For a given element a contained in X, if there exists a positive integer n such that a is fixed after n times iterations of f, then a is called a periodic point of the dynamical system, and such smallest positive integer n is called the period of a. Discrete dynamical systems have been found in information science and computer science. The core of studying dynamical systems is to understand the structure of its period and periodic point. In particular, for a given dynamical system, we want to find out whether there exists periodic points, how many are the periodic points, what is distribution of length of period, what is the maximal and minimal length of period. In applications we want to give effective algorithms for determining whether a point is a periodic point of a dynamical system. We also want to find out special period point when X has interesting structure. In this case we also concern about the algebraic or arithmetic property of periodic point. For example, what is the algebraic degree and average of periodic points.

一个离散动力系统(X,f)通常由一个具有某些代数结构的非空集合X和X到本身的一个映射f构成。如果对X中的一个元素a通过f的n次迭代映射回自身,则称a是该动力系统的一个周期点,并且此时把满足条件的最小的正整数n称为a的周期。离散动力系统在信息科学,计算机工程中有着广泛的应用背景。离散动力系统的核心研究内容是刻画周期和周期点的性质。例如我们希望得到周期点的个数,周期长度的分布,特别地最大最小周期分别是多少。在实际应用中则希望得到判断某个点是否该动力系统的周期点的判断准则或有效算法。对于一些具有代数结构上的离散动力系统,我们还关心周期点代数性质和算术性质,如周期点的代数次数,均值等等。

项目摘要

本项目主要研究了一些有限群上的幂方动力系统,得到了这类幂方动力系统中顶点入度的分布,圈长的结构,连接到每一点的根树的结构,并给出了此类动力系统同构的充分必要条件。此外还利用代数的方法研究了有限交换环上线性动力系统的高度的分布,得到了一类线性动力系统的高度分布随着环的大小是一个拟线性函数,我们猜测所有这类线性动力系统的高度都是如此。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
2

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
3

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
4

拉应力下碳纳米管增强高分子基复合材料的应力分布

拉应力下碳纳米管增强高分子基复合材料的应力分布

DOI:10.11868/j.issn.1001-4381.2019.000332
发表时间:2020
5

高温合金线性摩擦焊接头疲劳裂纹扩展有限元分析

高温合金线性摩擦焊接头疲劳裂纹扩展有限元分析

DOI:10.7527/s1000-6893.2021.25004
发表时间:2022

邓贵新的其他基金

批准号:11426072
批准年份:2014
资助金额:3.00
项目类别:数学天元基金项目

相似国自然基金

1

离散Hamilton系统周期解的最小周期问题

批准号:11101098
批准年份:2011
负责人:龙玉华
学科分类:A0302
资助金额:23.00
项目类别:青年科学基金项目
2

格上动力系统与时滞动力系统的周期解与分支

批准号:10161007
批准年份:2001
负责人:房辉
学科分类:A0303
资助金额:12.50
项目类别:地区科学基金项目
3

基于周期系统的周期离散时间代数Riccati方程及其相关问题的研究

批准号:11771159
批准年份:2017
负责人:陈小山
学科分类:A0502
资助金额:48.00
项目类别:面上项目
4

动力系统中旋转周期解Hopf分支问题研究

批准号:11901056
批准年份:2019
负责人:王帅
学科分类:A0301
资助金额:22.00
项目类别:青年科学基金项目