Artificial skull implant need to consider the general requirements combined bionic structure, strength, biocompatibility, human comfort degree, preparation property and cost. Based on these demands, this project aim to develop and investigate a novel bioceramic artificial skull implant with bionic three-dimensional porous structure using a novel digital light processing (DLP) based additive manufacturing technology.. This project will focus on the fundamental research subjects on the digital light processing based additive manufacturing of bioceramic artificial skull implant with bionic three-dimensional porous structure. Firstly, the structural design method for the bioceramic artificial skull implant with bionic three-dimensional porous structure which considering macro and micro bionic structure characteristics and mechanical strength simultaneously will be highlighted and established. Subsequently, the issues of the digital light processing (DLP) based additive manufacturing of bioceramic artificial skull implant will be studied in detailed. And the method and mechanism for shape controlling and property controlling will be investigated and found out. Finally, the mechanical properties of the bioceramic artificial skull implant with bionic three-dimensional porous structure will be characterized, and the failure model and mechanism through the mechanical coupling and failure analysis on this bioceramic artificial skull implant with bionic three-dimensional porous structure will be obtained. . The objective of this study is to establish a novel digital light processing (DLP) based additive manufacturing technology and disclosure the fundamental issues of bioceramic artificial skull implant with bionic three-dimensional porous structure. It is believed that this study can provide theoretical and experimental references on the design, analysis and security assessment of the bioceramic artificial skull implant for our country’s medical treatment development.
人工颅骨植入物需要综合考虑仿生形貌、力学强度、生物相容性、人体适应性、可制备性、经济性等要求,发展具有与人体颅骨结构相同或相似的仿生三维多孔结构生物陶瓷人工颅骨植入物具有重要的科学意义和临床应用价值。本项目针对人工颅骨植入物临床应用背景,突破仿生三维多孔结构生物陶瓷人工颅骨植入物的数字光处理(DLP)增材制造技术及其基础问题。项目将建立综合考虑宏微观仿生结构特性与力学强度的仿生三维多孔结构生物陶瓷人工颅骨植入物结构设计方法,掌握仿生三维多孔结构生物陶瓷人工颅骨植入物数字光处理增材制造控形、控性方法与调控机理,发展仿生三维多孔结构生物陶瓷人工颅骨植入物的关键力学性能测试与表征方法,揭示其在典型力学载荷下的失效模式与失效机理。期待本项目通过研究发展新型仿生三维多孔结构生物陶瓷人工颅骨植入物的数字光处理增材制造技术,为人工颅骨医疗领域发展提供一定的理论支持与实验依据。
人工颅骨植入物需要综合考虑仿生形貌、力学强度、生物相容性、人体适应性、可制备性、经济性等要求,发展具有与人体颅骨结构相同或相似的仿生三维多孔结构生物陶瓷人工颅骨植入物具有重要的科学意义和临床应用价值。针对人工颅骨植入物临床应用背景,经过本项目研究,突破仿生三维多孔结构生物陶瓷人工颅骨植入物的数字光处理(DLP)增材制造技术及其基础问题。项目建立了综合考虑宏微观仿生结构特性与力学强度的仿生三维多孔结构生物陶瓷人工颅骨植入物结构设计方法,掌握了仿生三维多孔结构生物陶瓷人工颅骨植入物数字光处理增材制造控形、控性方法与调控机理,发展了仿生三维多孔结构生物陶瓷人工颅骨植入物的关键力学性能测试与表征方法,并揭示了其在典型力学载荷下的失效模式与失效机理。本项目研究按照计划执行,完成了相关研究目标。在国际知名学术期刊上发表论文20篇,其中高水平SCI论文17篇。申请国家发明专利6项,授权2项。培养硕士毕业生8名。在读博士生5名、硕士研究生7名。并与中日友好医院联合联合培养博士后1名;与协和医学院联合培养博士生1名。项目发展的新型仿生三维多孔结构生物陶瓷人工颅骨植入物的数字光处理增材制造技术,为人工颅骨医疗领域发展提供一定的理论支持与实验依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
涡度相关技术及其在陆地生态系统通量研究中的应用
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
大尺寸生物陶瓷人工骨增材制造研究
光致可逆交联树脂的增材制造技术及性能调控
脉管嵌入式缺损颅骨复合支架的增材制造及其血管化方法研究
基于增材制造及可变形组件法的骨支架微结构仿生优化设计及性能研究